## Permutations (and Combinations)

It is sometimes very useful to be able to generate all permutations of some set in a computer program. For example, perhaps we need to do some exhaustive testing. In this exercise, you will write three short programs.

1. Generating the permutations of some set. A set is simply a list (of numbers) where there are no duplicates. A set of $n$ elements should have $n$ ! permutations. For example, [7, 9, 8, 6 ] should have 24 permutations. Here is an algorithm for generating permutations, based on Johnsonbaugh's Discrete Mathematics book. Let's assume that list/array indices begin with zero. You will need to implement a factorial function along the way.
```
\(s=\) the given set
\(\mathrm{n}=\) the number of elements
immediately print s as given: this is our first permutation
for \(i=2\) to \(n!\) do
    \(m=n-2\)
        // find the first decrease working from the right
        while \(s[m]>s[m+1]\) do
        \(m=m-1\)
        \(\mathrm{k}=\mathrm{n}-1\)
    // find the rightmost element \(s[k]\) with \(s[m]<s[k]\).
        while \(s[m]>s[k]\) do
        \(\mathrm{k}=\mathrm{k}-1\)
    swap \(s[m]\) with \(s[k]\)
    \(p=m+1\)
    \(q=n-1\)
    \# swap \(s[m+1]\) with \(s[n-1], s[m+2]\) with \(s[n-2]\), etc.
    while \(p<q\) do
            swap \(s[p]\) with \(s[q]\)
            \(p=p+1\)
            \(q=q-1\)
        print s
```

2. While we are in the neighborhood, let's also consider combinations. Given a set of numbers in the range 1..n, a combination is a subset of these numbers. Let's write out all the combinations of size $r$. This algorithm is also inspired by Johnsonbaugh. Note that the notation C( $n, r$ refers to the "combination" or binomial coefficient formula. You will need to implement both a factorial and a combination formula along the way. I recommend that you also keep track of how many combinations your program generates, so that you can verify correctness
```
n = size of list (1 .. n) from which a subset will be selected
```

$r=$ desired size of selection
for $i=1$ to $r$ do
$L[i]=i$
// print the first combination automatically
print L

```
for i = 2 to C(n, r) do
    m=r-1
    maxVal = n
    while L[m] == maxVal
        // find the rightmost element not at its max value
        m = m - 1
        maxVal = maxVal - 1
    // increment rightmost element
    L[m] = L[m] + 1
    // other elements are the successors of L[m]
    for j =m + 1 to r - 1 do
        L[j] = L[j - 1] + 1
    print L
```

3. A multiset is a list (of numbers) that allows duplicates. Let's enumerate all of the combinations of size $r$ from a multiset of $n$ items. I don't have an algorithm that works for all possible values of $r$, but let me illustrate an unsophisticated algorithm that works when $r=6$.
```
L = the given multiset
n = size of L
selection = initially empty list
answer = initially empty list
for a = 0 to n - 1 do
    for b = a + 1 to n - 1 do
        for c = b + 1 to n - 1 do
            for d = c + 1 to n - 1 do
                for e = d + 1 to n - 1 do
                    for f = e + 1 to n - 1 do
                                    append the list/sextuple
                                    (L[a],L[b],L[c],L[d],L[e],L[f])
                                    to the selection
// definitely put the first selection into our answer
append selection[0] to the answer list
// for all i from 1 to the end, see if selection already matches
// something in our answer
for i = 1 to size of the selection do
    matchFound = false
    for j = 0 to 5 do
        if selection[i][k] == answer[j][k] for all k in 0..5
            matchFound = true
    if matchFound == false
        append selection[i] to our answer list
// Once the i loop is finished, the answer list contains all
unduplicated selections
```

As an illustration, test your program on this input list:
$1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,25,50,75,100$
It turns out that the selection list will contain 134,596 elements, but the answer list will contain just 13,243 elements.

