CSC-101 Lab 6: Digital Signatures

So through previous labs we have learned how we can provide confidentiality to any message we like on the computer. But how can we ensure the encrypted message we are receiving is from the person who sent it and is untampered? For instance, with our RSA implementation, anyone can claim they are someone else and we would have no way of knowing the difference.

This is where Digital Signatures come into play. Just as you would physically sign a check to claim authenticity, we can digitally sign messages to do the same. Although, while we are at it why don’t we also ensure we can tell whether our message was tampered by an attacker.

We can do this by using a process called hashing. Hashing involves an algorithm that will for any input (files, messages, strings, imagines, applications) output a unique irreversible string. We can then compare the hash string against other hash strings to see if the original input was the same.

In our case, we are going to use hashes to check if our message has been tampered with by checking the original hash of the message to the hash of the message after “transmission”. (As a reminder, we are “pretending” the application is sending and receiving messages.)

Hashing is our first step which will insure the integrity of our message. Now we need to ensure authenticity by signing the hash. To do this we are going to encrypt the message’s hash using RSA, but in this case we are going to use the private key instead of the public key exponent. Then the recipient will use our public key exponent to decrypt the hash. We are using the private key instead because in theory only we will have the private key and if the recipient can successfully decrypt our digital signature then we must have been the sender.

The following diagram should help provide a visual to the process we are trying to achieve:

 [image: image1.png]Signing Verification

— Hash
function 101100110101 =
— Hash
Data
i s Digitally signed data
using signer's
rivte ey

o —
énnnnmnn
— Signature
@000 f—

Certificate Signature Data Decrypt

\, using sgrer's
-~ ublic ke
BN Hash polerer
funetion o
Attach
to data ?
101100110101 = 101100110101

Hash Hash

I the hashes are equal, the signature is valid.

Digitally signed data

Now it’s time to apply what you have learned about Digital Signatures to the RSA Program we wrote in the last lab. To make sure everyone’s code works and to also help make some of the harder concepts easier, please use the provided and updated code in the Student Out folder labeled DigitalSig.py.

Fortunately for your sake the functionality for hashing the message is already coded for you. Actually very little code is needed from you. Although before we dive into programming lets review a few methods that have been defined to make everything easier.

encrypt(<message>, <publickey>, <publickeyexponent>)

To use this method all you need to do is provide all the necessary parameters and it will return the encrypted message. For instance, a = encrypt(plaintext, N, e) is valid code that is used to encrypt the message.

decrypt(<message>, <privatekey>, <public key>)

This method will decrypt the message as long as the correct parameters are provided. For instance, d = decrypt(ciphertext, d, N) is valid code that returns the plaintext message from the ciphertext provided.

hashfromSig(<digital Signature>, <public key exponent>, <public key>)

This method will take a variable containing the digital signature and decrypt the digital signature and will return the original message’s hash value.

Now that we know all our helpful tools, let’s start coding.

There are four places you will need to complete for the program to work. As in the previous lab, do not change any of the code outside of the comments indicating where you should place your code. To help visualize how little is required to complete the program, a minimum of 5 lines of code are needed.

The first section is located within the digitalSignature method on line 125. The hash has already been created and is stored in the variable messageHash. We need to encrypt this hash using the encrypt method and our private key stored in the variable d. Store the output of the method in a variable called digitalSig. (HINT: Use the definition of the encrypt method above as a guide)

The next section is located in the hashfromSig method on line 141. We need to decrypt the digital signature to get the message hash. We will use the senders public key exponent in place of the private key to decrypt the signature. Like before store the result of the decrypt method in the variable digitalSig. Do not forget we need to use the public key exponent to decrypt our digital signature in place of the private key.

Next, we need to add some code at the end of the program file. There are two sections at the end. In the first one we need to obtain the hash that is encrypted in the digital signature. We can use the hashfromSig method to accomplish this. Store the output in the variable baseDigitalSigHash.

The final piece of code we need is to compare the original message’s hash from the digital signature to the new hash from the decrypted message. These hashes should be store in baseDigitalSigHash (the hash from the digital signature) and dataHash (the decrypted message’s hash, which has already been done for you). If both of the hashes are equal then we know the authenticity and integrity of the message is secure. If they are equal, print a sentence that tells the user this.

If everything was done correctly the code should run smoothly and your sentence should be printed to the interactive screen. Please get the lab aide or Dr. Healy to check your work.

