Image Steganography.

Steganography is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message. It is a form of security through obscurity.
The advantage of steganography, over cryptography alone, is that messages do not attract attention to themselves. Plainly visible encrypted messages—no matter how unbreakable—will arouse suspicion, and may in themselves be incriminating in countries where encryption is illegal. Therefore, whereas cryptography protects the contents of a message, steganography can be said to protect both messages and communicating parties.

You have already seen text-only steganography. Today we will try our hand at image steganography, which makes use of our knowledge of how images are stored inside the computer. We will attempt to hide a secret message inside an image. This can be done a few different ways. The following example was done by manipulating the binary values of the image. The image of the tree and sky contains another image. If you were not told this, you might never have known.

[image: image1.png]

The picture below has been hidden in the binary data of the above image.

[image: image2.png]

The hidden image. Source: Wikipedia

The other way to hide messages in an image is to manipulate the pixels values. Every pixel in an image contains three values that make up the color displayed. They are Red, Green, and Blue and each has a value of 0 - 255. The generated pixel is the combination of these values. We are going to take a text message and hide it throughout a spread of pixels in some image, and then analyze the resulting image to retrieve any hidden messages.

A very good way to spread our message will be to equally distribute the message in pixels diagonally throughout the image. We are going to hide our message as follows. For each character in the message:

· Convert it into its ASCII value
· Replace one color attribute of the next pixel with the character’s ASCII value.
We will choose which aspect of the pixel is changed based on the qualities of the image we are trying to hide the message in. This matters because if we decided to conceal our message in the red aspect of pixels, the image will have a variety of slightly red to bright red pixels throughout the image from where our message is contained. We need to choose the color we hide our message in very carefully. Using the red attribute to conceal our message might work if the image we are using is primarily red, although it would be very noticeable if the image were of water, which would be primarily blue. Instead, we would want to conceal our message in the blue attribute of the pixel if we were using a picture of water to start with.

The first matter of business is to complete the Python application that will do all of this for us. Then we are going to manipulate the application to help us discreetly hide a secret message in different images. The files you need for lab today are in the lab07 folder on the class Web site. Please download all files into a lab folder labeled “Lab7” on your removable drive.

Note to students using your own personal computers to complete the lab: The Python application is using the Python Image Library (PIL) for image manipulation. You will need to install the external library for the lab to work on your machine.

Once again this will be a very simple application to complete. Only a few lines of code are needed in a total of two sections.

At the beginning of the code, the secret message is contained in the message variable and the image we are going to hide the message in is stored in the image variable. At first, we will be using the image color.png, although we will change this later.

The first section we need to complete the act of hiding our message in the image. The code that is already written for you, get the image and calculates and grabs the pixels we are going to store the hidden message in. All we need to do is store the value of a single character of the message into one of the three color attributes. The character we are using is already stored for you in the message hiddenChar and the three color attributes are stored in red, green, and blue. All you need to do is choose one of the attributes and assign the character to that attribute. The rest is done for you.

In the second section we will complete the code that retrieves the message from the image. The code that already has been coded for you will grab the pixels that the message is stored in, you need to retrieve the hidden value from the appropriate pixel color values that was used in the previous section and append the value to a string that will be printed out to check your accuracy. You will need to use the chr() method to convert the ASCII value stored in the color attribute into its corresponding ASCII character. For instance, if you used green to conceal your message, you would use the chr() method as such: chr(green).
The application will automatically save your new image with the hidden message in an image called “colorhidden.png” in your Lab7 folder. Although please note that every time the application is run, the image will be written over. Before running your program again, it may be a good idea to delete colorhidden.png from your folder first.
Please have Dr. Healy or the Lab Aide check your work at this point before moving on.

Now we will try to using our own images to conceal your message. This might require you to change the pixel color attribute you chose to conceal your message. At this point, please find at least 3 different images on the Internet (No large images) that use very different colors. For instance, look for images like these:

· Ocean or sky

· Forest

· Fire or red logo

Download and store these images in your Lab7 folder.

Now, manipulate your application to hide a message into each of your image files and then show Dr. Healy or the lab aide your work. You will need to rename your images each time you hide a message or you will lose your work the next time you run the application.

