Common errors that haunt programs

1. Missing or extra semicolon. Every statement must end in a semicolon. But don’t put a semicolon at the end of a line that introduces an if-statement, loop or function.

2. Don’t use = to compare primitive values. Use == instead. (= assigns, == compares)

Don’t use == to compare objects. Use equals()instead. For example:

if (numPeople == 0) // rather than numPeople = 0

if (password.equals(correctPassword)) // rather than password == correctPassword

3. When comparing a variable to several values, you need to repeat the name of the variable each time. For example, the following comparison won’t work:

if (c == ‘a’ || ‘e’ || ‘i’ || ‘o’ || ‘u’)

We can fix it by saying:

if (c == ‘a’ || c == ‘e’ || c == ‘i’ || c == ‘o’ || c == ‘u’)

While we’re on the subject of comparing characters, remember that Java is case sensitive:

In other words, if c equals ‘A’, then c == ‘A’ is true, but c == ‘a’ is false.

And when comparing characters, be sure to use single quotes, not double quotes that we use for entire strings.

4. Don’t confuse && and ||. For example, for testing to see if a letter is neither a capital nor a lowercase y:

if (input != ‘Y’ || input != ‘y’)

is always true, which is probably not what you want. We should use && here instead.

Also note that the precedence of && is higher than ||. It’s a good idea to use parentheses readability. For example, let’s say you want to do something on the last day of the months that have 30 days:

if (month == 4 || month == 6 || month == 9 || month == 11 && day == 30)

This condition will be true during all of April, June, September, and on November 30. We should group the month checks like this:

if ((month == 4 || month == 6 || month == 9 || month == 11) && day == 30)

5. If you see yourself typing some consecutive if-statements, it’s likely you need to be using if-else. For example, let’s say you are implementing a withdraw function, and you want to penalize the customer $1 for attempting an overdraft:

if (balance >= amount) // if the withdrawal request is okay

 balance –= amount; // take out the money

if (balance < amount)

 balance –= 1.00; // otherwise we charge $1 overdraft fee

This code has a subtle bug – it won’t work. For example, if we start with balance = $100, and amount = $60, then by the time we get to the 2nd if statement, balance = $40, and

the condition is true (40 < 60), so we encounter an overdraft!

The best thing to do here is to replace the 2nd if condition with just an “else”.

In general, if you have a series of conditions to test, you should say

if …

else if …

else if …

else // note the last condition shouldn’t need an if

6. Be careful about mixing Strings and numbers when using the +. Remember that + can also mean string concatenation. So we need parentheses like this:

String answerString = “answer = “ + (first + second);

7. Beware of doing integer division, when real division is needed – cast one of the numbers to (double).

8. Be careful setting up a for loop, to avoid infinite loops or being off by one iteration.

For example:

for (num = 0; num <= 10; ++num)

actually does eleven iterations because we included both 0 and 10 in the range.

Also, when writing the test condition, try to avoid using == and !=: use <,<=,>,>= instead. Otherwise you might have an infinite loop like this:

for (num = 1; num != 100; num += 2)

This loop sets num equal to 1, and then the other odd numbers 3,5,7,…, but the only way
this loop can terminate is when num equals 100, which is impossible. The test condition

should say “num < 100” so that we can quit the loop when num becomes 101.

9. Don’t forget break statements in the cases of a switch statement.

10. Don’t re-declare an attribute inside a constructor or other function.

(Similarly, if you’re program uses inheritance, don’t redeclare an attribute of the superclass inside your subclass.)

11. With function calls – you must have parentheses even if there are no parameters.

So we would say card.isHeart() instead of card.isHeart.

Also, if the function returns a value, you probably need to do something with this value, such as assign it to a variable.

It’s important to be aware of the return type of functions that you call, including built-in ones. For example, be aware that when using NumberFormat, format() returns a String, not a double. And in the String class, charAt() returns a character, not a String.

12. Sometimes it is essential to check a function’s return value for failure. For example, in the String class, indexOf() and lastIndexOf() return –1 if the character you are looking for doesn’t exist.

int sentenceEnd = s.indexOf(‘.‘);

String s2 = s.substring(0, sentenceEnd);

In this example, the value of sentenceEnd could be –1, which will be a problem when

we try to use substring().

13. Beware of doing things out of order. For example, calling an initial-value constructor before determining the values being passed in as parameters. For instance;

Item thing = new Item(name, price);

name = kbd.readLine();

price = Double.parseDouble(kbd.readLine());

Another example of doing something out of order has to do with code that should

belong inside versus outside (before) the loop:

for (num = 1; num <= 10; ++num)

{

 sum = 0; // wrong – we should initialize sum=0 before loop

 sum += num;

}

14. Beware of referencing the wrong variable. For example, when finding the sum from 1 to max, see if you can identify the error:

for (num = 1; num <= max; ++num)

 sum += max;

Inside the loop, we should be adding num to the sum, not max.

This kind of mistake is easy to make with variable names that are similar, for example i versus j.

Also, don’t confuse the objects used for file I/O with the objects for standard I/O. For example, we have found it convenient to use Scanner for reading both kinds of input. Something we do often is ask the user for the name of an input file, and then read from that file. Here is an appropriate use of both kinds of input:

Scanner kbd = new Scanner(System.in);

String filename = kbd.next();
 // user types in name of input file

Scanner inFile = new Scanner(new FileInputStream(filename));

String input = inFile.readLine(); // input should come from the file

Here we need to be careful not to confuse kbd with inFile.

15. Don’t be confused by indentation. We use indentation to make code more readable, but the compiler ignores it. Take a look at this if-statement:

if (s.charAt(pos) == letter)

 System.out.printf(“I found a match at %d\n”, pos);

 ++ count;

At first glance, the body of the if-statement seems to have 2 statements, but because we forgot curly braces { and }, the real effect is that only the first statement is in the body. Thus, the ++count is performed even if the condition is false!

This general mistake can also happen in loops.

16. If you don’t test the program thoroughly, you may miss some latent bugs that aren’t immediately apparent. For example, let’s say you wanted to test to see when a student can register for classes:

if (credits >= 88 && clp >= 24)

 return “senior”;

else if (credits >= 58 && credits < 88 && clp >= 16 && clp < 24)

 return “junior”;

else if (credits >= 28 && credits < 58 && clp >= 8 && clp < 16)

 return “sophomore”;

else

 return “freshman”;

The subtle error is that the checks for clp are too strict. A student with 50 credits and 30 clp’s will not pass the sophomore condition. And what about a student with 90 credits and 9 clp’s? We can fix the code by taking out all the “<” checks.

17. When typing integer constants in your program, don’t type an additional leading 0 unless you are trying to use octal (base 8) or hexadecimal (base 16) numbers. For example, in a program that uses military time, it may be tempting to do something like this:

if (time < 0600)

 System.out.println(“before sunrise”);

However, 0600 is an octal number (because of the extra 0 in the front). To be on the safe
side just type 600.

