13

2

CS 11 -- Lab 7 -- October 16, 2008 – Random Numbers & Operators

Today’s lab has 2 parts. In the first part, you will be playing with random numbers. In class we saw how to generate random numbers and use them to simulate the rolling of dice. Now, we will adapt this technique to select random cards from a shuffled deck.

In the second part of the lab, we will extend our knowledge of the mathematical operators in Java. Recently, you have seen shortcut ways of adding in Java: the += and ++ operators. Today, you’ll run a program that features various mathematical expressions, and I’d like you to try to figure out how they work. Most of them are quite intuitive.

To begin the lab, please download the folder lab07 from the file server \\Csserver03.furman.edu\Fall2008\CSC121-01\Out onto your memory stick.

Part I – Choosing Random Cards

The two source files Card.java and Driver.java comprise a fun program allowing us to “deal” some cards. We’d like to pick 5 random cards from the deck and do two things: count how many cards are face cards, and how many are hearts.

1. In Card.java, you need to implement the functions isFaceCard() and isHeart(). Note that in the Card class, we have attributes denom and suit, which are both single characters. For example, the queen of diamonds is represented as a ‘Q’ for denomination and ‘d’ for suit.

When you write a function, one of the first things you need to decide is the correct return type. Here’s a hint: since the names of the functions start with the word “is”, this means that we are asking a question. The answer to the question is what we are returning.

2. Since this is a “game” type of program, the logic of the game has been put into the Driver.java file. The first thing that Driver does is read in an input file called cards.txt. This input file specifies how the 52 cards are being shuffled for the game. What we need to do now is read these cards from the file and store them into an array called “deck”.

You’ll see a while loop that is set to run for 52 iterations. You need to add code that will create a card object and put it into the array of cards.

3. Now the fun part! Now we’d like the user to play a little game. The user should enter 5 numbers, each in the range of 1-52. For each number the user enters, this will correspond to one of the cards in the deck. For example, an input value of 10 should retrieve the 10th card from the deck.

There is a loop set for 5 iterations. Inside the loop, we need to do the following (see the comments inside the loop):
· We need to get an integer from the user.
· We need to access the appropriate card object from the deck (array).
· Print out the card
· Increment the number of hearts and face cards, if applicable. Note that once this loop is completed, we will want to know the total number of hearts and face cards encountered.

At this point, run your program. You may want to open cards.txt to make sure that your program is grabbing the correct cards from the deck.

4. Let’s make a new version of the program: instead of interactively asking the user to enter 5 numbers, why not have the computer itself pick 5 random numbers? Make a copy of the file Driver.java and call it Driver2.java. Be sure to change “public class Driver” to “public class Driver2”.

You may recall that there is a while loop set to go 5 iterations – this is the loop that “deals” the five cards. In this loop, delete the code that interactively asks the user for a number. Replace this with a call to the random number generator. You need a number from 1 to 52 inclusive. Don’t forget that before the while loop, you need to create the random number generator, by calling the Random constructor. √

Experimenting with Java’s mathematical operators

5. At the beginning of the course we did simple experiments with some Java operators. Today, let’s look at some more. Java has many operators that are simply shortcuts. For example:

num += 5 is a shortcut for saying: num = num + 5
value *= 3 is a shortcut for saying: value = value * 3
++count is the same as count = count + 1

Run the program Experiment.java. See if you understand the output. Two basic ideas are:

· Precedence: Some operators need to be performed first.
· Associativity: When you have 2 operators at the same level of precedence, we normally evaluate left to right. The exception is when you have an assignment operator such as ‘=’.

[image: Albatross.jpg]
6. Finally, let’s take a look at some example of bad expressions. Add the following code to the Experiment.java file to see what kinds of error messages occur. Do you understand what is wrong with these?

x = 9++;

++(a + b);
image1.jpeg

