CS 11 – Lab #10 – November 6, 2008 – Practice with ArrayList class

We have seen arrays and ArrayLists as ways to aggregate many objects of the same type in Java. ArrayLists in particular are very useful when we do not know in advance how many objects we need to store. In today’s lab, you will complete a “shopping list” program that utilizes the ArrayList class. We want our program to read a file containing a shopping list of items. After we store these items, we’ll sort them by price and then print out the itemized list along with a total.

Download the existing code from the folder lab10 on the file server:

\\Csserver03.furman.edu\Fall2008\CS121-01\Out
Note that the program consists of 3 source files. Driver.java is very short. It basically tells us that we want to create a list, sort it, and then print it out. The details of how the list works are in ShoppingList.java. This is the file you will be modifying. Item.java contains the functionality needed for a single item for our list. It turns out that inside the ShoppingList class, we will want our list to contain these Item objects.

You may find it helpful to refer to the user-login example program (handout) for details on the nuts and bolts of using ArrayLists.

Here are the steps needed to complete the implementation. Inside ShoppingList.java, you’ll see corresponding points in the code marked with the comment “ADD CODE HERE”.

1. If you try to compile the program now, you will probably notice that some things have not been defined. The first thing to do is to declare and allocate space for our ArrayList. Notice that the rest of the program has already assumed we have this list. It’s important to remember that since this ArrayList is a class attribute, we need to declare it at the top of the source file, and then allocate space for it in a separate statement inside the constructor.

2. While reading the input file, we note that each line of input contains information about an item we wish to buy: a name and a price. As soon as we have this information, we need to create an Item object, and then append it to the end of the ArrayList.

3. At some point, it will be useful for us to know the total amount that our shopping list will cost us. The function getTotal() should accomplish this. You need to write a loop in this function that looks up the price of each item in the list and accumulate this value in the variable sum.

4. Perhaps the most interesting function is sortList(). I’ve set up the nested loop to help you sort the list in descending order of price. You need to write the body. Here, you need to be careful that you use the get() and set() functions in the right place.

5. Run the program. Does the output make sense? Can you think of 2 things that could go wrong while some malicious or careless user tries to run your program? We’ll discuss how to fix these types of problems in class tomorrow.
