13
2

CS 11 – Lab 13 – December 4, 2008 – A First Look at Inheritance

Inheritance is a powerful technique that allows you to efficiently design new classes out of existing ones. The idea is that a new class may be more specialized, and so it should have additional attributes and operations. In this lab, you will experiment with certain features of inheritance, to see how to use it, and to see what types of operations can or can’t be done.

Please copy the existing Inherit folder from cs.furman.edu/~chealy/cs11/Inherit to your disk. This includes two basic Java files, Animal.java and Reptile.java. Take a look at these files so you can see the hierarchy: because Reptile “extends Animal”, Reptile is the subclass. In other words, every reptile is also an animal, so reptiles inherit everything about animals, and add or redefine further.

1. What do you think will happen if we call the Reptile constructor like this?

Reptile r = new Reptile();

Write a Driver file that creates a reptile. Does the output make sense? Explain in your own words here: ___

2. Add the following statement to your main() function:

System.out.printf(“%d legs\n”, r.numLegs());

The Reptile class has no numLegs() function. Does your program compile? If so, what

is the output when you run? Explain what is happening here:

__

3. Now add this statement to your main() function:

System.out.println(r);

Note that both classes have a toString() function. Which one gets called, and why?

__

4. Now try this statement in main():

System.out.println(r.getWeight());

Why does this function call work even though there is no variable called weight?

__

5. Now go to the Animal class and change the access specifier for the variable weight from protected to private. What effect does this have on the getWeight() function in Reptile.java ? Run it and see.

__

6. Change the access specifier of weight in Animal.java back to protected.

Now we are going to make a new class, a Snake class that is a subclass of Reptile. Create a new source file Snake.java, that defines this Snake class. In it, write a default constructor that prints “ Snake created” (with 2 spaces at the front).

In the Driver, create a new Snake object called s. Run the program, and look at the output when the snake is created. What is happening here?

__

Let’s experiment with something. Change the top line of Snake.java so that it extends Animal instead of Reptile. What difference does this make?

__

Don’t forget to change Snake back to extending Reptile.

7. Now let’s take a look at using non-default constructors. Suppose you wish to name your Snake using the name attribute of the Reptile class. Since Reptile only sets this value in its constructor, how can the Snake constructor use the Reptile constructor to give the Snake a name?

Basically what we need to do is to explicitly call a particular superclass constructor, and pass the name as a parameter. To call a superclass constructor, we simply type:

super (whatever parameters we need);

But be sure this is the first statement in the subclass constructor, which is Snake in this case. Remember we always have to do higher level constructor(s) before our own constructor.

At this time, write an initial-value constructor for the Snake class, that allows us to specify a snake’s name. Add a statement to this constructor that prints the name of this snake that is being created. Then go back to main() and have it create a new Snake object called s2 with the name “Sam”.

How is the output of creating s2 different from when s is created?

8. Okay, time to override some functions. Type this statement into your main() function after s2 has been created:

System.out.println(s2);

Do you like the output? What happened?

Write a new toString() function in the Snake class that will return “I am a snake.”

Run your program again. Why is the output different, even though you haven’t made any changes to main()?

9. Add the following statement to the main() function:

System.out.printf(“%d legs\n”, s.numLegs());

Why does it say that a snake has 4 legs? ________________________________

Write a new numLegs() function in Snake.java that will return the appropriate value.

By doing so, you are overriding numLegs() in Reptile. Run the program again to see that the output is now correct.

[image: image1.png]

10. Now let’s play with several animals at once. In your main() function, declare an ArrayList of Animal using its default constructor. Call this ArrayList object zoo.

Using the ArrayList add() function, insert 3 new objects: an Animal, a Reptile and a Snake.

Now type in this loop:

for (int i = 0; i < 3; ++i)

 System.out.printf(“%s\n”, zoo.get(i));

Describe what is happening when you run this loop: ________________________

11. In our zoo, we know that the 3rd element (the one at position 2) is a Snake. Let’s try to do something special with this snake. Go to Snake.java, and add a new function called checkVenom(), that returns true.

Now we want to make sure that when we play with the animals, we stay away from the poisonous ones. Go back to main() and type in this loop:

 for (int i = 0; i < 3; ++i)

 if (zoo.get(i).checkVenom())

 System.out.printf("Watch out, animal #%d is venomous!\n", i);

Check it out. What happens? ___

The problem is that get() returns an Animal and checkVenom() belongs to Snake. To help the situation, cast the expression zoo.get(i) to a Snake before calling checkVenom(), like this:

((Snake) zoo.get(i)).checkVenom();

Compile and run again. Does this work better? What’s wrong? What else do we need to change to make sure the loop will do what we intended?

__

__

Program design using Aggregation and Inheritance.

Finally, let’s consider how to design a program that uses several classes. For example, we can model a restaurant order for lunch. Here is a menu:

Chicken sandwiches

Drinks (coke, iced tea)

White meat

3.95

small

0.50

Dark meat

3.50

medium

0.75

Fish sandwiches

large

1.00

Tuna

2.95

water

free

Salmon

5.95

Desserts

Crab meat

9.95

Key lime pie

2.00

Hamburger

4.95

Chocolate cake

1.50

Banana split

1.00

The program would interactively ask the user for an order. Assume that a person will want to order some kind of sandwich (which could be a hamburger, or chicken or seafood sandwich), plus a drink and a dessert. The program would ask the user interactively for this information as follows:

Welcome to the Paladin Restaurant.

What kind of sandwich would you like: (c)hicken, (f)ish or (h)amburger? c
Do you want your sandwich cooked (r)are, (m)edium, or (w)ell? w
For your chicken sandwich, do you want (w)hite or (d)ark meat? w
What kind of bread: (w)heat, (r)ye or (p)umpernickel? r
Do you want the bread toasted? (y/n) y

All our sandwiches are available with the following

 condiments: (c)heese, (k)etchup, (m)ustard, ma(y)onnaise,

 (l)ettuce, (t)omato, (o)nion, (p)ickles. Please enter the

 letter of the condiments you want to leave off: kpoyc
Now, something to drink? (c)oke, (i)ced tea, (w)ater: i

What size iced tea? (s)mall, (m)edium, (l)arge: m

And for some dessert? (k)ey lime pie, (c)hocolate cake, (b)anana split: k

Here is your order. Your meal is...

Entree: a chicken sandwich with white meat cooked well on rye bread, toasted, with: mustard lettuce tomato

Drink: a medium iced tea

Dessert: key lime pie

Your total comes to $ 6.70

12. What classes would be needed to solve this problem? Also consider the attributes of each class. Once you have decided on the classes, determine where we have class relationships. Namely, where do we have aggregation and inheritance?

