CS 11 – Homework #2 – due 10am Monday 5 May 2008

Connect Four

Being able to write a game in a programming language is a lot of fun, and it’s also a good milestone for learning about problem solving in general.  This is because you need to be able to resolve several issues – how to represent the game (board) information internally and in the output, how to detect and perform a legal move, and how to detect a winner.  In this program you will have more practice using 2-D arrays.

The game Connect Four is a two-player game that has a board with 6 rows and 7 columns.  The board is usually kept vertical so that players insert their tokens by selecting a particular column and dropping their piece in the next empty slot in that column.  To win the game, you must get 4 of your tokens to line up in any row, column or diagonal, and you must prevent your opponent from doing the same.  Your program will be a simulation of this game – we will call the players by single letters (such as B and Y standing for colors).

Basic Features (60% of marks)

The structure of your program should have 2 files.  The main() function should involve only the high-level algorithm of whose turn it is, asking the player for which column to go into, and announcing the winner.  The nuts and bolts of the implementation should be in a separate file where the Connect4 class is defined.  I recommend your Connect4 class include the following functions:

· Connect4() – default constructor that initializes the board

· toString() – return a string representation of the board

· insert() – given a player and a column number, attempt to place this player’s token into the board, but if the column number is out of range or the chosen column is full, return false so that main() can print an error message and ask the player to try again

· win() – see if the player who just went has won the game

Example I/O:

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

Player B, what column do you want to try? (1-7)  4

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . B . . . 

Player Y, what column do you want to try? (1-7)  7

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . B . . Y 

Player B, what column do you want to try? (1-7)  3

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . B B . . Y 

Player Y, what column do you want to try? (1-7)  8

Sorry, the column you chose is not a valid choice; try again.

Player Y, what column do you want to try? (1-7)  4

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . Y . . . 

. . B B . . Y 

Player B, what column do you want to try? (1-7)  5

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . Y . . . 

. . B B B . Y 

Player Y, what column do you want to try? (1-7)  3

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . Y Y . . . 

. . B B B . Y 

Player B, what column do you want to try? (1-7)  0

Sorry, the column you chose is not a valid choice; try again.

Player B, what column do you want to try? (1-7)  6

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . Y Y . . . 

. . B B B B Y 

The winner is B!

Advanced Features (20% of marks)
Now that your program can play one game of Connect Four, we can now have a multi-game match.  The two players B and Y will play a series of games to determine the overall winner.  The match will now be decided on points, and the first player to reach or exceed some threshold value will be declared the winner.  Here are the rules:

1. The players will play several games until one player reaches 20 points.  This threshold value should be set as a defined constant at the top of one of your source files, because we may want to change it later based on the skill of the players.

2. Each time a game ends, count how many spaces on the board are still blank.  The winner will be awarded this many points.  The loser will always be awarded 0 points. 

3. Special cases:  If the game ends with one player winning but the board is completely full, award 1 point to the winner.  If the board is full and there is no winner, award both players 1 point.

4. Player B will go first in odd-numbered games; player Y will go first in even-numbered games.

5. Please print both players’ total scores after each game.

I want to be able to run your program under both single-game and multi-game match modes.  Therefore, when you implement your advanced features, please write this in a new Driver source file with its own main() function.

Style (10% of marks)

Please remember to exhibit good programming style.  For example, helpful comments describing your approach to the solution, good variable names, appropriate indentation.  Your code should be reasonably succinct.  In particular:  there are about 140 ways that a player could win Connect 4, depending on exactly where the 4 aligned pieces could be.  But this does not mean you should have 140 if-else statements!  Try to arrange your code using loops so that you can avoid typing many similar statements.  

Also, at the beginning of each source file and above each function, please write Javadoc-style comments.
Design (10% of marks)

Please turn in a general design document by Wednesday April 23rd.  It should outline how you plan to structure your solution for at least the basic features of the assignment.  
