
Laboratory 4: 
First Looks: IF Statement, Debugging tools 

 
Overview: As your knowledge of the C++ language grows, your capacity to write 

more useful and complex programs also increases.  Today we'll explore 
two facilities for increasing this capacity.  First, we'll see how the if and 
if-else statements work for making decisions.  Second, we’ll see how we 
can use the debugging tools in Borland C++ to test our programs. 

 
Objectives: Before you leave lab today, your goals should include: knowing how to 

use the if statement, boolean logic and basic decision making in 
programs; understanding how to design good sets of test data and how to 
use diagnostic output statements or the debugging tools in Borland C++ 
during testing. 

 
1. Setting up for the lab 

 
 Please perform the following activities as you wait for class to formally begin: 
 
a. Boot up the machine and log on to the CS Department server, as described in Lab 1. 
 
b. Put your lab diskette in the A: drive and make a subdirectory lab04 in the labs 

directory. 
 
c. Download the files from the class Web site to your new directory.  The URL is 

http://s9000.furman.edu/chealy/cs11/labs/lab04. 
 
 
 

2. Inquiring about the IF statement 
 
 The if statement allows the programmer to make decisions.  If some 
expression—called a boolean expression—is true, one action can be taken.  If, instead, 
the expression is false, another action can be executed.  The if statement can definitely 
be a problem for the careless programmer.  The following will help you to better 
understand the if statement, so that you can avoid some of its more troublesome pitfalls. 
 
a. Open the program triangle.cpp.  This program expects three numbers in non-

decreasing order as its input.  It first determines whether the user correctly typed in 
the numbers.  If he or she did not, the program terminates.  If the instructions were 
followed, the program determines whether the numbers correspond to the sides of a 
triangle, and if they do, what kind of triangle. 

 
b. Look over the program thoroughly to get an understanding of how it works.  Try as 

input the numbers 5   4   9 (in that order).  Observe what output is displayed. 



 
c. Now try those numbers in the proper order:  4    5    9.  Again observe what output is 

displayed. 
 
d. Come up with other test inputs that will cause the various other output messages to be 

displayed (i.e., inputs that correspond to the various kinds of triangles).  Write your 
test inputs in the space below.  Run the program to show that you chose correct input 
values. √ 

 
 Now we'll use the if statement to help compute the value of a standard boolean 
function, that is, a function which has True (1) and False (0) for its input and output. 
 
e. Open the file named nand.cpp.  This file offers one solution to the truth table below 

for the nand function.  Run it on the four possible input combinations to verify its 
correctness. 

 
p Q p NAND q 

False False True 
False True True 
True False True 
True True False 

 
f. Notice that it is only the last combination—p and q both being true—that causes the 

nand result to be false.  Restructure your code so that it uses a single if and a single 
else.  This can be accomplished by testing only whether or not the combination 
defined in the last row of the truth table is the one you have as input. 

 
g. Make and run the program. Remember, if you get stuck, ask for help.  √   
 
 

3. Writing your own if statements 
 
 Now let’s get some practice writing your own if statements from scratch.  You 
and your partner should read through the following decision descriptions.  Discuss them 
together if you have questions about how to interpret a decision. 
 
Decision Descriptions 
 
Segment a If i divided by j is 4, then i is set to 100. 
 
Segment b If i times j is 8, then i is set to 50, otherwise i is doubled and j is set to 60. 
 
Segment c If i is less than j, then j is doubled; if instead i is even, then i is doubled; 

otherwise, both i and j are incremented by 1. 
 
 



 Write down a statement in C++ which would implement each program segment.  
You may want to use pseudocode or flow charting first (especially on Segment c). 
 
Statement for Segment a 
 
 
 
 
 
 
Statement for Segment b 
 
 
 
 
 
 
 
 
Statement for Segment c 
 
 
 
 
 
 
 
 
 
 
 Before you even test your code segments, you should determine some test sets for 
each segment.  Good test sets will test every branch of your if-else statement.  In other 
words, there should be a test case for every possible decision outcome.  Take a few 
minutes with your partner to fill in the following tables with good test sets for each 
segment.  Also, predict what i and j will hold after each segment is executed using the 
test cases. 
 
Segment a 
Test Values Results after segment 
i j i j 
    
    
 
 
Segment b 



Test Values Results after segment 
i j i j 
    
    
 
Segment c 
Test Values Results after segment 
i j i j 
    
    
    
 
 
 Now, you are ready to implement and test your if and/or if-else statements.   
 
a. Open the source file segments.cpp from your lab04 folder.  This program will allow 

you to enter test cases for each of your three segments.  Scroll through the file and 
find where you should place your segment code.  Enter your three segments and 
compile until you do not have any syntax errors. 

 
b. Run the program.  Notice that you may enter several test cases for each segment by 

entering ‘Y’ when asked if there is more testing necessary.  Run the program as often 
as necessary to test and retest until you have successfully matched the predicted 
outcome for each of your test cases. √ 

 
 

4. Tracking down problems in code 
 
 There are three kinds of errors—syntax, semantic and logical.  Often, the code 
you or others write will go through the compiler with no difficulty (i.e., there are no 
syntax errors) and will even run with no errors reported (i.e., there are no semantic 
errors).  Does this mean that it will work?  Well, it will do exactly what you told it to do, 
and not necessarily what you want it to do.  Frequently, we'll see programs that look 
correct and that compile just fine, but do not run properly (i.e., there are logical errors). 
 The source of programmer logical errors is often carelessness.  Other times it is a 
lack of understanding about the use of a particular statement that controls the flow of 
execution in the program, such as the if statement we've been practicing with. 
 Diagnostic print statements can be used effectively to track down logical errors.  
Borland C++ also provides a powerful Debugger with tools to help you find software 
defects in your programs. 
 We will go back and work with the file nand.cpp, so close any windows for 
segments.cpp and open nand.cpp.  You will probably have to compile and link the 
program again. The first tool we will explore is the Step feature.  Step-ping through a 
program enables you to watch the flow of control in your program.   
 



a. Try the Step option by selecting Step Over from the Debug menu.  The first 
executable line of code in your program is highlighted and the program execution is 
halted.  To execute this line you may select Step Over from the Debug menu or press 
the F8 key.  The highlighted line is executed and the next executable line in your 
program is highlighted.   Every time you press F8, Borland C++ will execute one 
more line of code. 

 
b. Continue to step through the program. When you get to the cout, you must press F8 

again to get to the cin, so that you'll be able to input.  When you get to the if-else 
statement, notice that only one branch of the statement is highlighted (or executed).  
The other branches are completely ignored.  Step all the way to the end of nand.cpp.  
You should now reset your program so that you may run it again.  To do this, you can 
select the Terminate Program option from the Debug menu.  Use the "Page-Up" key 
or the scroll bars to move to the beginning of nand.cpp. 

 
 Another feature the debugger offers is the Watches option.  By using Watches, 
you are able to observe the value of variables at different points in the program.   
 
c. Go up to the Debug menu and select Add Watch.  When the dialog box comes up, 

enter the variable p into the box labeled Expression as the one you wish to watch.  
Then choose Add Watch again, and enter the variable q. 

 
d. Use the Step function (F8) to walk again through your program one line at a time.  

Observe that once program execution begins and even before the variables are 
initialized in an assignment statement, that there is a value for the variables.  The 
values are the ones left there from some previous use of the computer memory.  Also, 
observe that the Watch box shows the values of both p and q as they change during 
the program's execution. 

 
e. Reset your program. 
 
 A third feature that Borland provides is the Breakpoint option.  By inserting a 
breakpoint, it is possible to simply run your program in the usual fashion (i.e., by 
choosing Run).  When the program reaches the line where you have inserted a 
breakpoint, it pauses its execution and awaits your commands.  Breakpoints are useful as 
you don't always want to step through large programs—it is often easier to let them run 
until they reach the place you want to observe.  Let's insert a breakpoint into the 
nand.cpp code. 
 
f. Use your mouse to select a line in the program that contains the first if statement.  

Choose the Toggle Breakpoint option from the Debug menu.  You will see a red bar 
appear on the line you selected. 

 
g. Now run the program.  Observe that execution stops at the breakpoint you inserted.  

You now have several options: 
— Adding or removing Watch variables 



— Pressing F8 to execute the next line of code 
— Choosing Run to continue the normal execution 
— Choosing Terminate Program to start over 
— Removing the breakpoint 

 
h. Try removing the Watch on the variable q.  To do this, click on the q in the Watch 

Window and press the "Delete" key.  Continue the program execution by hitting F8 
or choosing Run.  Be sure that you can stop a program on a specific line, add a watch 
on a variable object, and step through your program one line at a time.  √   

 
i. Breakpoints are removed by Toggle-ing them again. 
 

 
5. Finishing up 

 
a. Close all windows and exit Borland C++. 
 
b. Exit all applications and shut down your computer. 


