
1

Laboratory 7: Getting Classy

Overview: The concept of a class facilitates the object-oriented features of C++. A class

defines an object type, or abstraction, from which individual objects can be
declared, or instantiated. A class encapsulates both the attributes (data members)
and behavior (member functions) of a type of object.

Objectives: Before you leave lab today you should have a better understanding of:

1. how to declare a class in a header file (including how and why the access

specifications "public" and "private" are used),

2. how to define a class in an implementation file, and

3. how to use a class to instantiate an object.

You should understand how classes use information hiding and encapsulation.
You should understand what data members and member functions are, including
constructors, inspectors, mutators and facilitators. You should understand how
and when to use the member access operator (".").

In general, after this lab you should be well on your way to understanding the
purpose of classes and how to put them to use appropriately.

1. Setting up for the lab

 Please perform the following activities as you wait for the lab to formally begin:

a. Boot up the machine and log on to the CS Department server.

b. Put your lab diskette in the A: drive and make a subdirectory LAB07 in the LABS directory.

c. Download the files from the class Web site to your new directory. The URL is

http://s9000.furman.edu/chealy/cs11/lab07.

2. The basic elements of classes

http://s9000.furman.edu/chealy/cs11/lab07

2

 Objects are the fundamental unit of programming in object-oriented languages like C++.
Objects are models of information and are implemented as software packages that contain or
encapsulate both attributes and behavior. A representation of information and the operations to
be performed on it is a data abstraction.

 A fundamental-type object is an object that is provided by the programming language.
For example, in C++ the type int and the operations on it are part of the language definition.
That is, all C++ compilers must provide int objects. In addition to the fundamental types, C++
provides several mechanisms to define other types. These other types are called programmer- or
user-defined types.

 The class construct is the most important mechanism for defining new types. With this
construct, software engineers can define encapsulated objects. When defining a class, we
typically use the information-hiding principle:

All interaction with an object should be constrained to use a well-defined
interface that allows underlying object implementation details to be safely
ignored. (i.e. Always use inspectors to view properties and always use
mutators to set property values).

By following the information-hiding principle, classes tend to be more reliable and more easily
reused.

 To consider the basics of creating a new object type using the class construct, we first
examine the declaration and definition of a programmer-defined type—the Account class.

a. Open the file account.h to see the class definition for account. Examine the code. Identify

the different components of a class definition, including:

• data members (attributes)
 These are normally private to allow the enforcement of the information-hiding

principle.

• constructors
 These have the same name as the class and and declare an object of the class.

Note that there are 3 constructors (default, initial-value and copy). Be sure you
can tell which one is which.

• inspectors
 These provide methods to access representations of the data members of an

object. (They return the value of some attribute of an object.)
• mutators

3

 These provide methods to modify the representation of the data members of an
object. (They change, or mutate, an object.)

• facilitators
 These perform some action or service on or for an object.

b. Note that inspectors, mutators and facilitators are simply different kinds of class member

functions. If you are unsure about any aspects of the definition of the account class, ask
me before proceeding. You should understand all parts of the definition.

 By convention, when defining a class, we give the public section first as the members in
this section can be used by any function. The protected section (if it exists) is then given. The
private section comes last.

3. Experimenting with classes

a. Open the project bank.ide. Then open the file bank.cpp from that project. Examine

the code carefully.

Note that to access a member we use the member access operator, which is the period (.).

b. Build and run the project and examine the results.

c. Modify the program by defining a new account object called betty. Make a second call

to the appropriate member function to also display the Betty’s balance. Demonstrate your
modified program. √

 We will now test whether the access permissions associated with the account class are
truly in effect. Rather than using the inspectors, we will attempt to directly access the data
members.

d. Modify the implementation of the main program as follows. The object jason is of the

account class, and so has the property balance. To get Jason’s interest rate, assign a
local variable with the value jason.rate. This is the syntax necessary to obtain the value of a
public property.

e. Try to compile your modified file. Examine the compiler messages. Do you understand the

error message you get from the compiler?

4

f. Modify account.cpp so that is implements an inspector get_rate() to provide the interest
rate attribute of an object. Comment out the line of code in bank.cpp that caused the syntax
error, and instead use the get_rate() member function to find out Jason’s interest rate. √

Note that the names of the member functions are preceded by the class name and the scope
resolution operator, which is a double colon (::). The member functions must be identified this
way, otherwise the compiler would not be able to tell that they belonged to a class.

 The first function defined in the file is a constructor. A constructor for a class is invoked
when an object of that class is instantiated.

g. To verify that the account constructor is invoked when an account object is declared, add a

statement in each of the three constructors to display the following message, as appropriate:

 default constructor called
 initial-value constructor called
 copy constructor called

 Execute the modified program. How many times was each constructor called in the

program? Do you understand the flow of control? √

h. Remove (or comment out) the display statements you added to the constructors.

Keep in mind that a member function of a class, even a public member function, can access the
private members of the class.

i. Add a member function interest() to the file account.cpp. This function adds the

appropriate amount of interest to the account balance.

Note that none of the member functions in your interest() function need to use the selection
operator (.). Why is that? Is interest() an inspector, mutator or facilitator? Should the
qualifier const be used?

j. Modify the class definition of account in account.h to include the prototype of the

member function interest().

k. Modify the main program so that the account object jim has interest added after the initial

call to get_balance(). Re-display its balance after the interest is added. Run the project
bank.ide again. √

l. Close the bank.ide project. (Select Close Project from the Project menu.) Close Borland

C++ and log out.

5

Post-Lab activity:

We did not have a pre-lab assignment for this lab, so I am replacing it with this post-lab
question. Please turn in your response tomorrow at the beginning of class. Late submissions
will not be accepted.

Look again at the withdraw() member function. It returns –1 if we try to withdraw more money
than we have. Here –1 really represents an error condition rather than an amount of money. In
the main program, when we try to take $60 from Judy’s account, the output is misleading.
Each time we call the withdraw() member function, we must test to see if the return value is –1.
If it is, we should print an overdraft message; otherwise let the withdrawal proceed. Show on
paper how you would modify the main program so that it uses the return value of withdraw()
properly. In particular, in the case of taking $60 from Judy, it should print an error message and
tell the user why there is a problem (i.e. tell the user how much is in the account so that it is clear
there is an overdraft.) Note: you should not modify the account class implementation to
accomplish this modification.

