
1

Lab #9: An Array of Numbers

Overview: In today’s lab we will practice implementing one dimensional arrays of

fundamental objects. Arrays are used extensively in many different applications,
and it is important that you are comfortable with creating and manipulating the
elements in an array structure.

Objectives: Before you leave lab today you should know how to create a one dimensional

array of fundamental objects by initializing the array in the program or by reading
values into the array from a file. You will also know how to write a loop that
processes the elements of an array. You should understand how the insertion sort
algorithm works for sorting an array, and you will be able to sequentially search
an array for a value.

1. Setting up for the activity

 Please perform the following activities as you wait for class to begin:

a. Boot up the machine and log on to the CS Department server.

b. Put your lab diskette in the A: drive and make a subdirectory LAB09 in the LABS directory.

c. Download the files from the class Web site (http://s9000.furman.edu/chealy/cs11/lab09) to your new

directory.

2. Create an array and initialize array elements

 We will be using an array of integers throughout this activity. Remember that an array
data structure allows you to store objects of the same type in memory. You can then access
items of the array using an index into the array. In this activity, you will be using the array
squares which should hold the squares of the integers 0-9.

a. Start up Borland C++. Open the program file sq1.cpp. This program file has a function that

you can use to display the elements of an array on the screen. Look through main() and
notice that you are to create and initialize an array and then display the array to the screen.

Initializing array elements when declaring the array
 One technique that you can use to initialize the elements of an array is to use the
following syntax when creating the array: type ArrayName [size] = {elem1,elem2,...};.

b. Using this technique, create the array squares as indicated in the comments and initialize the

elements to {0,1,4,9,16,25,36,49,64,81}.

c. Build and run the program and be sure that your array is displayed properly.

http://s9000.furman.edu/chealy/cs11/lab09

2

Initializing array elements from a file
 A more useful technique for initializing array elements, especially for large arrays, is to
read the values from a file. The advantage of this approach over the first is that it is easier to
change one of the initial values in the array. You don’t need to change the program file and
recompile to change an initial value in the array, but you simply need to change the data file
holding the values.

d. Save sq1.cpp as sq2.cpp and modify sq2.cpp so that the array squares is not initialized in the

declaration statement (i.e. remove the ={0,1,4,9,16,25,36,49,64,81}). Add a function
set_array which will read the values from the file sq.dat. You may assume that this file
contains ten integers and nothing else. Functions cannot return arrays using the return
statement, so you should send the array squares as a parameter. Whenever arrays are sent as
parameters, they are always reference parameters (and you do not use &). Simply put empty
[] for the size of the formal array parameter in the function interface. For example, void
set_array (int A[]) is the proper interface for a function which can change the values of array
A. A proper function call would look like set_array(squares).

e. Build and run your program. Your output should be identical to the first approach. √

Initializing array elements by computing values in program
 Another popular technique for initializing array elements is to compute the values in the
program. Notice that in the array squares, that each element can be easily computed from the
index for the element. For example, squares[3]=3*3 or 9.

f. Save sq2.cpp as sq3.cpp. Modify the set_array function in sq3.cpp so that the array

elements in squares are initialized in a for loop which computes each value.

g. Build and run your program. Your output should be identical to the previous approaches. √

3. Processing an array

 We will now practice processing an array in a program when you don’t necessarily know
how many elements are in the array. You must specify the maximum number of possible
elements when you declare the array, but you do not have to actually use all of those elements.
Two very common processing tasks are sorting array elements in ascending or descending order
and searching for array elements once sorted. There are many different possible sorting and
searching algorithms. You will explore these algorithms and their effectiveness in upcoming
courses. For now, we will practice with a simple insertion sort algorithm, and you will write
your own simple sequential search function.
 The insertion sort algorithm processes the array elements sequentially (i.e. index 0
through index n). At any point in the algorithm the array elements to the left of (or above) the
current element (say index c) are sorted. The objective is to shift sorted array elements to the
right until the correct location for element c is found and then insert c into that position.

3

a. Close your open windows in Borland C++, and then open sortex.cpp. Read through the code
carefully, concentrating on the sort function. Be sure you understand how this function is
operating.

b. You have a file called nums.dat in your directory. Implement the input_numbers function

so that it reads nums.dat and places each number read into the array. Your implementation
should count the number of integers read and return that counter in the reference parameter
n. Be sure that you return the number of integers read and not the index of the last number
read. Do you understand the difference?

c. Build and run your program. You should see the sorted array displayed on your screen.

Look at the file nums.dat to be sure that you have the correct number of integers in your
array. If you are missing a value in your output, you have probably implemented
input_numbers incorrectly. Try again!

 You have successfully read an array from a file and sorted it using the insertion sort
algorithm. Now let’s see if you can write some code to search the sorted array for a particular
number. Again, we will use a simple search algorithm called sequential search. This algorithm
simply starts looking for the number at the beginning of the array and continues traversing the
array until the number is found or a number larger than the number being looked for is
encountered. Remember the array is sorted so once we find a larger number we know that we
can stop searching.

d. Remove the slashes from sortex.cpp which comment out the module for searching.

Implement the function search which can search an array of any size using the sequential
search algorithm.

e. Build and run your program again. Test the program thoroughly. Can you find the first

element in the array? the last element? What happens if you search for a number that is not
in the array, or bigger than any other number in the array? √

f. Close all windows and exit Borland C++.

