E)(a,»mﬂl"’- ,,—f U.rinj

an In +€r{a,¢6 .
Ny

public interface Encryption

({
public void encrypt();
public void decrypt();

s** Encrypt and decrypt data using the Caesar cipher.

*

*

* % % %

For the purpose of this simple program, it’s not necessary to keep
around both the plaintext and ciphertext Strings/ but if we enhance
the program, they may be useful.

The 'key’ attribute is the number we need to add to each letter to
encrypt it.
/

public class Caesar implements Encryption

({

private String plaintext;
private String ciphertext;
private static int key = 7;

// no need to initialize data yet
public Caesar ()

{

)

public void setPlaintext(String s)
{
plaintext = s;
}
public void setCiphertext(String s)

(

ciphertext = s;
)
/** encrypt —-- Go through each character of the string and add the key
* vyalue. Note that the cast is needed because the + operator returns

* an integer result.
*/
public void encrypt()
{
ciphertext = "";
for{int i = 0; i < plaintext.length(); ++1)
ciphertext += {(char) {(plaintext.charAt(i) + key);
System.out.println{ciphertext);

)

/*% decrypt -- this is exactly the inverse of encrypt
*/

public void decrypt ()

{
plaintext = "";

for (int i = 0; i < ciphertext.length(); ++i)
plaintext += (char) (ciphertext.charAt(i) - key);

System.out.println(plaintext);

* to encrypt and decrypt data

/** Encryption.java —- Interface that defines what operations we want
in order to support encryption.

Namely, we need to have a way
(Strings) .

/**

Encrypt and decrypt data using the Xor cipher.

* Xor stands for "exclusive or". This is a technique that manipulates
the binary representation of the characters. One interesting feature
is that the encryption and decryption functions are the same.

* And, like the Caesar cipher, there is a ‘'key’ value we perform the

* operation with.

*/

*
*

public class Xor implements Encryption
{

private String plaintext;

private String ciphertext;

private static int key = 7;

// no need to initialize data yet
public Xor ()

{

}

public void setPlaintext (String s)
{
plaintext = s;
}
public void setCiphertext(String s)

{

ciphertext = s; {
} {
/** encrypt -- Go through each character of the string and add the key
* value.
*/
public void encrypt()
{
ciphertext = "";
for{int i = 0; i < plaintext.length(); ++i)
ciphertext += (char) (plaintext.charAt(i) ~ key) ;
System.out.println(ciphertext);
)
/** decrypt -- this is exactly the inverse of encrypt
xy
public void decrypt()
{
plaintext = "";
for (int i = 0; i1 < ciphertext.length(); ++i)

plaintext += (char) (ciphertext.charAt(i) * key);
System.out.println(plaintext) ;

JE*

*/

import java.io.*;

public class Driver

{

public static void main(String [] args) throws IOException

{

Driver.java -- main module for our encryption program

// where BufferedReader is defined

System.out.print("Do you wish to encrypt or decrypt? (e/d) ");
BufferedReader kbd = new BufferedReader (new IhputStreamReader(System.in));
char choice = kbd.readline().charAc(0);

// Let's use the Caesar cipher as our encryption scheme. If we want
// to change to another scheme, just use a different class that
// implements the Encryption interface.

Xor cipher = new Xor{});
if (choice == ‘e’)
{
System.out.print ("Enter text to encrypt: "y

String input = kbd.readLine();
cipher.setPlaintext (input);
cipher.encrypt () ;

}

else if (choice == 'd’)

{
System.out.print {"Enter encrypted text: ")
String input = kbd.readLine();

cipher.setCiphertext (input) ;
cipher.decrypt () ;

/** TwoD.java -- interface for 2-dimensional objects
*/

public interface TwoD

{
public double findAreal();

}

/** Rectangle.java —-- example of a 2-d shape
* We say that we are extending the Shape class, where the name attribute
* was declared.
*/
public class Rectangle extends Shape implements TwoD
{
private double length;
private double width;

/** Notice that the first thing we do is call super{), which
* means we are calling our parent’s constructor.
*/
public Rectangle(String n, double 1, double w)
{
super (n) ;
length = 1;
width = w;

}

public double findArea()
{

return length * width;
}

/** Shape.java —-- The most general class in our hierarchy.
* / B

public class Shape

{

private String name;

public Shape(String n)
{
name = n;

}

public String toString ()
{

return name;

}

/** ThreeD.java -~ in addition to area, we want the ability to determine /** Driver.java -- Let’s practice using objects of inherited classes.
* the volume. * For example, both rectangles and spheres are specific kinds of shapes.
*/ / { *

public interface ThreeD exten TwoD ’ * One interesting feature of inheritance is that when we declare our

{ * shape objects sl and 82 below (not terrific names for variables!)
public double findvolume () ; * we could have declared them to be of type Shape. However, to call the

) *

proper findArea or findvolume functions, we would need to use a cast
* like this: { (Rectangle) sl).findArea().
*/
public class Driver
{
public static void main(String [] args)
(
Rectangle s1 = new Rectangle("office", 14, 18);
Sphere s2 = new Sphere("volleyball", 4.5);

System.out.println("The " + sl + " has an area of " + sl.findArea());
System.out.println("The " + s2 + " has a volume of " + s2.findvolume());

)

/** Sphere.java -- an example of a class implementing ThreeD.
* we must specify both area and volume.
*/

public class Sphere extends Shape implements ThreeD

{

private double radius;

This means

public Sphére(String n, double r)
{

super (n) ;

radius = r;

}

// It might be faster to just use radius*radius, rather than
// calling the pow() function.
public double findArea()
(

return 4.0 * Math.PI * Ma >w {radif 2.0);
) Wow ~ we can have both
public double findvolume()

(inheritance £ interfaces .

return 4.0/3.0 * Math.PI * Math.pow(radius, 3.0);
}

(We. can even inherit from
a l()cll”JZ*71L ;117‘EZK?‘;¥(:4Z {C/)

/** Cube.java -- another example of a class implementing ThreeD.
*/
public class Cube extends Shape implements ThreeDd

{

private double side;

public Cube(String n, double s)
{

super (n) ;

side = s;

}

public double findAreaf()
{

return 6.0 * Math.pow(side, 2.0);
}

public double findVolume()((
(.
return Math.pow{side, 3.0);
}
}

'// Here we define all the attributes and operations that every animal will
// have. Other specialized classes for different types of animals will

// build on this basic definition.

// The classifier "protected" means that these attributes can be accessed
// in this file, and in subclasses, but nowhere else.

//
// By the way, I've included print statements in the constructors just so

// we can see what‘s going on. In the long run, we usually wouldn‘t do this.
public class Animal
{

protected double weight;

protected boolean isWarmBlooded;

protected boolean isHungry;

public Animal {)
{
weight = 10;
isWarmBlooded = false;
isHungry = true;
System.out.println{“Just created an animal.");

}

public String toString()
{
return “"animal";

}

// An animal should only exercise if it‘’s had enough to eat (if not hungry}.
// We also have a special cases for fish and birds.
// Here in the Animal class we can look down and see if an Animal object is
// a Fish or a Bird, but we can’‘t call any specific Fish or Bird function.
// So we can tell if we are a bird, but we can’t tell if we can fly (oops).
// We could write our own exercise() version in the Bird class.
public void exercise()
{
if (isHungry)
System.out.println("Tooc hungry to exercise, sorry.");
else
{
if {this instanceof Fish)
System.out.println(this + ' swims about!");
else if (this instanceof Bird) .
System.out.printin{'watch * + this + " fly!*);
else
System.out.println(this + " gets a workout!");

isHungry = true;

)

// Only feed the animals if they are really hungry.
public void feed()
{ .
if {! isHungry)
System.out.println{this + " isn‘t hungry at the moment. Try later.");
else

{ .
System.out.println{this + " is grateful for the grubi"};

weight += 0.1;
isHungry = false;
)
}

public double getWeight()
{
return weight;
}
}

// Here we define what it means to be a bjrd... We're making the attributes
// protected so that a subclass (e.g. Penguin) can change them.
public class Bird extends Animal

{

protected double wingspan;

// we also inherit the attributes: isHungry., isWarmBlooded

public Bird() ({
(
weight = 20;
isWarmBlooded = true;
wingspan = 30;
System.out.println{* just created a bird");

)

public boolean canFly()
(

return true;

}

public class Penguin extends Bird

{

// no new attributes -- just use the ones from Animal & Bird

public Penguin()
{

System.out.println(" just created a penguin®);

}

public boolean canFly()
{

return false;

}

public String toString()
{

return "Tux";

}

public class Reptile extends Animal
{
public Reptile()

{
weight = 40;

}
public String toString()
{
return *reptile";
)
// When the Snake class calls super.getName(), this is it.
public String getName ()
{

return “Sam";

}

public class Fish extends Animal

(
double length;
boolean isSaltWater;

public String toString()
{

return “Frank";

)

public class Snake extends Reptile

{
private double length;
private boolean isVenomous;

public Snake()
{

length = 4;
weight = 30;
isVenomous = false;

}

// If we are in a subclass, it’s possible to call a function
// defined in the parent class by ag the we *super*.
public String toString() ({
{

return super.getNamel();

}

/** Let's make a zoo -- the other files in this program define various

* animals, and here we can create and play with them.

* PBecause a zoo has several animals, and we don’t know how many in advance,
*# let's use a Vector instead of an array of animals. A Vector has all the
* functionality and is more flexible than an array: it allows you to grow
* or shrink whenever needed.
*/

import java.util.*;

import java.io.*;

// where the Vector class is defined

public class Driver
{ .
public static void main(String [] args) throws IOException
{
Vector zoo = new Vectoxr();
pufferedReader kbd = new BufferedReader({new InputStreamReader(System.in));

// This loop will interactively get input concerning

// what the user wants to do with the animals.

while (true}

(.
System.out.println("\nCurrently we have * + zoo.size() + " animals.");
System.out.print (" (p}rint zoo, (a)dd animal, (d)elete, “);
System.out.println(" (e)xercise, (f)eed, (w)eigh, (g)uit program");
System.out.pript("Enter your selection: ");
char input = kbd.readlLine(}.charat{(0);

// A series of if/else statements will handle the individual commands.
// It would be more efficient to read both the command and the
// respective animal at the same time, rather than have separate prompts,
// but it would be more difficult for the user to remember exactly
// how to enter the commands. This implementation makes it easy to run.
if (ipput == ‘a‘)
{
system.out.print (" (b)ird, (p)lenguin, (f)ish, (r)eptile, (s)nake? ");
char type = kbd.readLine().charAt(0);
switch (type)
{

case 'b’ : zoo.add(new Bird())}; break;
case 'f' : zoo.add(new Fish(}); break;
case ‘p’' : zoo.add(new Penguin()); break;
case 'r’ : zoo.add(new Reptile()); break;
case ‘s’ : zoo.add(new Snake{)); break;

default: System.out.println{"Invalid animal type, sorry.");

)

else if (input == ‘d4d')

{
System.out.print {"Enter number of animal to delete: *“);
int num = Integer.parselnt (kbd.readLine());
700 . remove {num) ;

else if (input == ‘p’}
{
for (int i = 0; i < zoo.size(); ++i)
System.out .println("#" + i + “ —=> " + zoo.elementAt (i));

)

// Take a close look at the calls to exercise() and feed() below.
// It turns out that the Vector’s elementAt() function returns simply
// an Object, and we need to cast it to Animal, because exercise()
// and feed() belong to the Animal class. This cast is not a problem,
// because the Vector consists of animal objects (or specialized
// versions of animals, which also have the ability to exercise and eat)
else if (input == ‘e’)
{

System.out.print ("Which animal do you want to exercise? ");

int num = Integer.parselnt (kbd.readLine());

{{Animal) (zoo.elementAt (num))) .exexrcise();

else if (input == ‘f’)
{
System.out.print("Which animal do you want to feed? ");
int num = Integer.parselnt (kbd.readLine()):
{ (Animal) (zoo.elementAt (num})) . feed();
) .
else if (input == ‘w')
{ .
system.out.print ("Which animal do you want to weigh? *);
int num = Integer.parselnt (kbd.readlLine());
System.out.println(zoo.elementAt {num) + " weighs " +
{ (Animal) (zoo.elementAt (num))) .getWeight (});
) .
else if {input == ‘q‘)
break; :
else
System.out.println("Invalid option. Try again.");

