
CS 122 – Homework # 8 – “Warehouse” – due Tuesday, April 30, 2019

The purpose of this program is to review and practice several Java concepts you have seen throughout
the course.

Suppose a company has just been formed and is preparing to start business. The company is in retail
trade. The management would like to purchase or build several warehouses around the country to
store their merchandise. A critical factor in determining the locations of these warehouses is to
minimize the distances from these warehouses to the general public.

Every household in the United States is a potential customer. And for each customer, it would be
possible to estimate the distance from that household to its nearest warehouse. The company wants to
minimize the average distance that a package would have to travel from a warehouse to a customer.
You will write a program to perform this calculation. The output of your program will be a list of
(hopefully) optimal locations to select for the warehouses.

In order for this program to work, we need appropriate input data. We need input data that accurately
reflects the geographical distribution of the population. On the class Web site, you will find a file called
tract.txt that you should use as input for your program. Each line of tract.txt shows a census tract,
which is, on average, a neighborhood of approximately 4000 people.

Here is an example of a line from tract.txt:

01001 AL Autauga County 020100 1912 1601 217 44 32477 086490 2424

There are basically two things you want to know about each tract: its population and its precise
location. (The name of the tract is also nice for output.) If you treat this line as a string in Java, then the
substring with indices (6, 29) gives you the name of the census tract. Inside the substring (29), if you
tokenize on a space, the second token is the population of the tract. In the example above the
population is 1912. The next 3 tokens can be ignored for this assignment. The last 3 tokens on the line
give geographical information: the latitude, the longitude, and the land area of the tract. You need the
latitude and longitude to give you the location of the tract. The latitude and longitude are expressed in
thousandths of a degree. So the above example is located at 32.477 North, 86.490 West.

Each census tract represents a possible location for a warehouse. Suppose we want 10 warehouses
around the country. How should we find the best 10 census tracts to choose for our warehouse
locations? It turns out that a brute force exhaustive search would take too long! So, instead, your
program will repeatedly select 10 tracts at random from around the country. For each random selection
of 10 locations, the program will compute the average location from a person to the closest warehouse.
Assume that everyone in America lives at the latitude and longitude given for each census tract. For
example, in the census tract given above, we will assume that all 1912 people live at the location
(32.477, 86.490). This is a useful approximation for the sake of the program.

It's unlikely that one random selection of 10 warehouses will be optimal! Therefore, your program will
repeatedly make random selections of warehouse locations. Keep track of the best set-of-10 that you
find. I recommend performing 25,000 random selections in order to keep the runtime of your program
reasonably short.

Here is a recommended outline of your program. You should have a source file called Driver.java that
contains the core algorithm:

Read tract.txt, and create an array of Tract objects.
Create an array A of 10 Tract objects representing the optimal
selection.
for trial = 1 to 25,000:
 Randomly generate a selection S of 10 Tracts.
 for each Tract t in the country:
 d = shortest distance from t to a Tract in S.
 Compute the weighted average of all values of d
 (i.e. weighted by the population of t)
 If this weighted average distance is less than the distance
 for the array A, then reset A to the selection S.
 Keep track of its weighted average distance,
 and also the trial number where this minimum was found.
 if trial is a multiple of 200, print onto the screen
 the current value of A and the corresponding average distance
 so that the user can see the progress of the algorithm.

The tract class should include attributes for the name, population, latitude and longitude. It should have
an initial-value constructor, a get method for each attribute, and a toString(). The toString() method
should display the latitude and longitude to 2 decimal places, as well as print the name of the tract.

When you print out your array of Tracts representing warehouse locations, you should print out the
array in order from east to west. In other words, in ascending order of longitude. Therefore, I
recommend that you write a comparator class that compares longitudes of a tract or warehouse.

Here is a hint about computing distances. To simplify the calculation, assume that the earth is flat, and
that each degree of latitude or longitude is exactly 60 miles. Then, you can simply use the Cartesian
distance formula between two points.

Your program will be run at the command line. By default (java Driver), you should assume that
the user wants exactly 10 warehouse locations. But the user may supply a command-line argument
specifying a different number, for example java Driver 7. You should notice that your program
will take less time if there are fewer warehouses. So, in the early stages of development, you may want
to just experiment with small input sizes so you are not waiting too long for your program to finish.

Here is an example final output for 5 warehouses and 25,000 trials. Your results may differ due to
random luck!

trial 5110/ 25000 = 266.25 miles
 1 40.86 73.45 5070 NY Suffolk County 110102
 2 34.09 83.42 5494 GA Jackson County 010500
 3 41.84 88.04 3654 IL DuPage County 842709
 4 32.86 96.78 2469 TX Dallas County 007906
 5 34.26 118.52 7087 CA Los Angeles County 111301

