
CS 122 – Lab #11 – Using Java’s Hashtable data structure

In today’s lab you will complete the implementation of a useful program that makes use of an
interesting data structure: Java’s Hashtable, which is analogous to the dictionary in Python. In other
words, we want to reference individual elements in our collection by means of a “key” rather than an
index number. The Hashtable will store data as ordered pairs (key, value), in which each key is unique.
Behind the scenes, this key is converted into a hashCode using a numerical process, and then this
hashCode is converted into an index to be used by the actual array representation. The value in the
(key, value) pair is inserted into the array at this index.

Please create a new folder called lab11 and copy all my files from the lab11 folder on the class Web site
http://cs.furman.edu/~chealy/cs122/ into your folder. You only need to make changes to Driver.java.
Follow the specific directions given in the comments.

You may want to briefly review the syntax on how to use the Hashtable class. The online Java API
documentation is an excellent source. Also, I have created a hashtable folder on the class Web site
showing an example program using a Hashtable. Some of the useful methods include get, put, replace,
remove, containsKey and keys.

The purpose of this program is to read an input file that stores user login information for a computer
system. Each line of the file contains a user’s name and an amount of time logged in. See the file
login.txt. The program should read the file, and create a Hashtable of users. The keys will be the user
names, and the values will be the minutes of computer time that the person was logged in.

As you read in the data, you need to note if you have ever seen this person before. If the person is
already in the hash table, then update that person’s value. Otherwise insert a new name/minutes pair
into the hash table.

At the end of the program, dump the contents of the hash table into an ArrayList and sort the users in
descending order of login time. I have provided a comparator class UserComparator.java to help you do
this. Finally, print the users’ info, one person per line.

Save and run your program, and make sure the output makes sense.

Finally, consider this question. Why did we use a Hashtable, instead of using an ArrayList throughout? If
we had used an ArrayList from the beginning, what performance disadvantage would we incur? In other
words, can you point to a place in your implementation where using a Hashtable is faster than doing the
same operation using an ArrayList? What is it? ___

__

__

http://cs.furman.edu/%7Echealy/cs122/

