public interface Speaker
{
public void speak();

public class Dog implements Speaker

{
public void spealk()

{

System.out.println("bow wow wow wow!");

public class Poet implements Speaker

{
public void speak()

{
System.out.println("I think; therefore I am.");

)

public void write()
{

System.out.println("Once upon a time, ..., the end.");

public class Driver
{
public static void main(String [] args)

{

Speaker guest;

guest = new Dog();
guest.speak() ;

guest = new Poet();
guest.speak () ;

// guest.writel(); will not compile because it does not belong to
// the interface, so let’s cast:
{ (Poet)guest) .write();

..............
..............

..............
..............

/** Pet.java - example of polymorphism
* We're going to declare a variable pet of the Animal class.
* But 'pet' will assume different dynamic types depending on which
* constructor we use.
*/

public class Pet
public static void main(String [] args)
Animal pet;

System.out.printf ("animal #1...\n");
pet = new Bird();
pet.feed();

System.out.printf ("\nanimal #2...\n");
pet = new Fish();
pet.feed();

// Let's make a Penguin. Even casting it as a Bird doesn't fool the
// compiler. It's still a Penguin!

System.out.printf ("\nanimal #3...\n");

pet = new Penguin() ;

pet = (Bird) pet;
pet.feed();
}
}
pet.out

..............
..............

animal #1...

Just created an animal.

just created a bird

animal is grateful for the grub!
animal eats like a bird!

animal #2...

Just created an animal.

Frank is grateful for the grub!
Fish need to eat too!

animal #3...
Just created an animal.

just created a bird

just created a penguin
Tux is grateful for the grub!
Tux eats like a bird!
Penguing love ice cream.

