Intro to Stacks and Queues

We'll spend some time looking at stacks, and then briefly touch on gueues.

Stacks are good for: Queues are good for:
When things need to be done forwards When things just have to wait for
and backwards enough input to come in before processing
Recursion and backtracking, such as For instance when you have distinct
storing a solution to a maze problem parts of your program working together as
Some card games where you have real in: Producer/consumer, Reader/writer,
“stacks” of cards, as in gin Input/output, Client/server

Both are linear structures with limited access.

Stacks have push() and pop() operations that access only the top of the stack. We may
also find a use for a “peek” operation if we want to see what’s on top of the stack without
removing that object.

Queues have two operations — enqueue() for inserting an object on one end; dequeue() for
deleting an object from the other end.

In a nutshell, stacks and queues are just special kinds of array-like aggregations of objects.
(It turns out that queues are often implemented in a circular manner, but we’ll save that
topic for another day.)

Let’s look at stacks in particular. We'll start with a Stack interface. At a reasonable
minimum, we’d like these methods in any stack implementation: push, pop, peek, size,
toString. But at the same time, we don't want to cheat - we should not want anything like
an indexOf or any method that uses an index. These would not make sense with a stack.

Possible implementations of stacks:
¢ ArrayList '
s LinkedList
¢ API Stack ! (We got lucky this time - there already is a built-in Stack. But strangely
enough, no built-in Queue. So it pays to understand how to do some things by
ourselves.)

How would you implement our 5 methods given a particular underlying representation such
as an ArraylList? Hint: toString should print the “top” of stack first, so it should start out
similar to peek and pop.

Now that we have a Stack interface and implementation(s), we need an application!
There are many applications of stacks, but a good first example would be the problem of
detecting balanced parentheses in a string. Here’s the idea:

Push every ‘('

Pop a *(when you see a ')’

Ignore all other characters

The output should say whether the input string is good or bad. How can we tell, using the
stack?

