
1

Lab #2 – Learn Some Linux and C

Some of this lab is adapted from the first lab of my CS 122 class, so this may be a nice
review for you.

With any computer, the operating system is the most important piece of software to use,
because this is the manager of the machine, giving you access to your files, plus other
resources such as the CPU and printer. What we call Linux today was originally developed
under the name UNIX at Bell Labs in the 1970s and has many similar versions on various
platforms today.

The appendix lists the more commonly used Linux commands.

Before you start today’s lab, please make sure you have completed yesterday’s lab
through step 28. At that point, you will have a single, fully functional Raspberry Pi
machine to use. We will continue with step 29 on that handout (which begins the process
of adding more machines) after we have learned something about the Linux system and C
language.

1. If you don’t see a terminal window on the screen, double click on the “LXTerminal”
icon. It’s sometimes useful to have more than one terminal window open at once.

2. You should see a command prompt, which means the operating system is ready for
your commands. You will notice that the command prompt gives both the name of the
machine and your user name. It may also tell you where you are in the file hierarchy,
and every time you boot the machine or log in, it takes you to your home directory.

3. When working in the Linux operating system, most of your work will be done inside the
terminal window. We communicate with Linux through a number of commands. To
tell Linux to do something, you just type in the appropriate command and hit enter.
On the PCs, before people used Microsoft Windows, there was DOS. In fact, even
today you can access a DOS prompt when working on a PC. Entering Linux commands
on the terminal screen is just like using the DOS prompt, but of course the commands
are different here since it is a different operating system.

4. In the terminal window, type in the command who and then hit return. This command
asks Linux who is logged into the machine. In the response, you should see your user-
name listed, along with what time you logged in. If this were a multiuser system,
sometimes you would see multiple names listed.

5. At this point you should carefully look over sections 1-9 in the “commands for files”
section of the appendix, to review the basic commands covering basic file management

2

(creating, renaming, copying, etc.). However, we probably don’t have any files to
manipulate yet! Let’s create some. There are basically 2 ways to create a file: either
by using an editor to type out the contents we want; or by running some
command/program and redirecting the output to a (new) file. Let’s try both of these
techniques.

Be sure you understand sections 1 and 9 of the Linux commands appendix. Section 1
deals with an editor called nano, which is fairly simple to use. Section 9 explains the
compiler. This is all the essential information you need to know to do simple
programming in the Linux environment: that is, typing in source code, and getting it
to compile and run.

6. Go into your demo directory, and use nano to create a file called hello.c, the
classic “hello, world” program in C. When you are finished typing, save the file
and exit nano.

#include <stdio.h>
main()
{
 printf(“Hello, world!\n”);
}

Now we are ready to compile. Type gcc hello.c . If you have any syntax errors,
then re-edit the file hello.c.

If there are no error messages, then the compilation was successful. Type ls.
What new file was just created? To run your program, type ./a.out. You should
see your output immediately on the screen.

Incidentally, it may a good idea to experiment with how gcc responds to errors.
Re-edit hello.c and intentionally delete some important token, or add some stray
symbols. Try recompiling, and see what kind of errors you encounter.

As you have seen, we can use a text editor such as nano to create a file. Now, here is
the 2nd way to create a file. Anytime you run a program that has output, you can
redirect its output to a file. To accomplish this, you need to use the special “>” symbol
and give the name of the output file you want. For example, you can type

./a.out > hello.out. This command says that we want to run “a.out”, and write its
output to the file called “hello.out”. Caution – if this file already exists you will be
overwriting it. Linux will not warn you about this.

In the appendix, you’ll see a short section on the cal command. If you type “cal 2017”
you’ll see this year’s calendar to the screen. And it’s not hard to write this calendar to

3

a file. You can type: “cal 2017 > this_year.txt”. Of course, just like any other file,
you could use the “more” or “less” commands to look at it.

7. Before we continue, I just want to mention that there is a way to run your programs in
Linux without having to specify “./” immediately before the name of the executable
file. We need to add “.” to your path so that Linux will know to look in the current
working directory to find commands. You will need to edit your ~/.profile and/or
~/.bashrc file(s). At the end of the file you probably have a line that reads:

PATH="$PATH:/home/rpimpi/mpich-install/bin"

Add the characters :. Immediately before the final " so that it reads

PATH="$PATH:/home/rpimpi/mpich-install/bin:."

Reboot your machine with the command “sudo reboot.” To see if this fix has worked,
go to a directory containing an executable file, and run it without the “./” before it. It
should no longer say “Command not found.”

8. I can’t resist… let’s write a second very simple C program. Let’s teach the computer

how to count. Create a new C source file called count.c, and enter the following code:

/* count.c – Print the values from 1 to n, where the user specifies n. */
#include <stdio.h>
main()
{
 int i, n;

 printf(“Count up to what number? “);
 scanf(“%d”, &n);
 for (i = 1; i <= n; ++i)
 printf(“%d\n”, i);
}

Compile and run this program. If it works to your satisfaction, run it again, but this
time redirect the output to a file such as count.txt. Does the program do what you
expect?

Remember that a.out is always the default name of your executable file. If you are
going to have more than one C program in a directory, it’s probably a very good idea
to rename this executable file by using gcc’s –o option!

Modify your count program so that it also computes and displays the sum of all the
numbers it prints.

Feel free to experiment further by making modifications to the above program, such as
printing only odd numbers, printing numbers in reverse order, printing up to 10

4

numbers per line, etc. You will find this is not hard to do, because you already know
how to do this in Java or other programming languages.

9. We could also experiment with other kinds of redirection (e.g. input redirection and the
pipe operator), but for the time being, it would be a good idea to experiment with
renaming, copying and moving files until you are comfortable with the file system.
Then, please read over the handout on the C language and experiment with the
features discussed there. For example, can you write a short interactive program that
simulates the rolling of dice? Ask the user how many times the dice should be rolled
and what sum on the dice is desired. Tell the user how many trials actually resulted in
that sum, and what percentage of all trials (i.e. 17%) this represents.

APPENDIX: Handy Reference of Linux Commands

Some of the more useful Linux commands are described here. You should keep this
lab handout handy until you feel more comfortable with the commands. Just one
word of caution: Linux was developed primarily for computer professionals. It was
designed to get work done quickly and powerfully. Consequently, it is easy to
shoot yourself in the foot if you are not careful – Linux will do exactly what you tell
it to do. For example, when you tell it to delete a file, it won’t prompt you for a
confirmation – that file is gone forever! In just a few keystrokes it is possible to
destroy all your files. So be especially careful when using special wild-card
characters like the ‘?’ and ‘*’. (The question-mark will match any single character
in a file name, and the star will match any number of characters in a file name.)

Commands for files

1. The nano command

nano is a text editor, which allows us to create a text file. Most often we will use
an editor to write a program’s source code, or some other input file. Since we
will be using Linux as a programming environment, it is important to become
comfortable with a text editor. Another text editor on this system is vi, but it is
more difficult to learn.

To edit a file, simply type in nano at the command prompt, followed by the
name of the file you want to edit. For example, type in nano test1. Since this
file does not already exist, you will see it empty inside nano. At this point, type
in the following sentence:

This is my first text file created with nano.

5

Also put in your name and date, and anything else you wish. The arrow keys
allow you to navigate through the file, and the backspace and delete keys do
what you would expect. Notice that along the bottom of the window, there is a
list of control commands. For example, to save your file, hit control-O and
verify the file name. You also have the opportunity to save the current file
under a new name as well. Then, to quit from nano, hit control-X. If you enter
control-X without saving, you will be warned and given a chance to save the file
before you leave.

If you happen to have a bigger file, using the arrow keys to go up and down can
be quite slow, so to move up and down faster, there are control keys for this
too: control-V goes down and control-Y goes up. (We consider the “top” of the
file to be the beginning.)

Note that it is possible to start nano without specifying a file name.

2. The ls command

This is like the “dir” command in DOS. The ls command is saying, “Please list
the files that are in this directory”. Various options can give you additional
information.

At the command prompt, type ls . (The period is not part of the command!)
Not much of a list, is it? Now try ls -a . When we add that option –a, this
stands for “all” files, including those whose names begin with a dot. The dot-
files are special files that deal with the particular characteristics of your
computer account.

Now type ls -l . Here, the –l option stands for “long listing”. (That option is
the lowercase letter L not the number one.) This provides more detailed
information about each file, including its size and when it was last modified.

If you type ls -la , this combines both options: print all files, and give a long
listing.

Now type ls -lat . The extra option t means to list the files in chronological
order according to the date and time of their last modification.

Now type ls -latr . The option r means to list in reverse (chronological) order.

3. The pwd and mkdir commands

pwd stands for “present working directory”. If you type pwd, the system will tell
you in which directory you are currently working. Since you have just recently
logged in, you should still be in your home directory.

6

If you want to create a new directory (for example, a subdirectory within your
home directory), we use the mkdir “make directory” command. So to create a
directory called demo, simply type mkdir demo. Note that when a directory is
created, it is initially empty: there are no files inside. (You can create as many
directories as you wish to hold files, and directories can themselves contain
directories: this is called a hierarchical file system.)

Now type ls to see that a new directory is in fact listed.

4. The cd command

cd stands for “change directory”. This is like the “cd” command from DOS,
except that the convention in Linux is to separate directory names with a
forward slash instead of a backslash. With this command, you can navigate the
directory hierarchy, or give a specific destination. Here are some examples:

Command Meaning

cd changes to your home directory no matter where you are

cd ~ does the same thing as just typing “cd”

cd demo changes to the current directory’s subdirectory demo

cd ~/demo no matter where you are, go to the demo directory that
 is located right under your account’s main level

cd .. goes back to the next higher directory in the hierarchy

cd /usr/share/dict changes to the specific directory /usr/share/dict

5. The cp, mv and rm commands

cp stands for “copy”, mv stands for “move” and rm stands for “remove”.

We use the cp command in order to create another copy of the same file into the
same or a different directory. First, type cd to go to your home directory. Let’s
try some examples of copying files:

cp test1 first_file creates a copy of the file with a new name

cp first_file demo/. creates a copy of this file and puts it in the demo directory
 Note: the “.” means to keep the same name as the original.

Now use the cd command to go into the demo directory, and then type ls . Do
you see the first_file there?

7

Now that we are in the demo directory, let’s copy the other text file test2 here
as well. Type cp ../test2 second_file . This literally says “copy the file test2
from the parent directory and put it in here under the name second_file”.

(Please call me over any time you don’t understand what’s going on.)

The mv (move) command is used either to rename a file or to move it into
another directory. The big difference between cp and mv is that mv is not
making a copy.

Make sure you are in the test1 directory. Try these examples:

mv first_file 1st_file change the name of this file

mv second_file .. move this file back up to the home directory

Now type ls to see the changes. Do you understand what happened? Go to the
home directory (either by typing cd or cd ..) and type ls there. You should
notice that second_file has just been moved here.

The rm (remove) command deletes the file(s) you indicate. Once deleted, a file
cannot be restored, so be very careful! Try this sequence of commands inside
the demo directory:

ls list the contents of the directory

cp 1st_file new_file create a copy of the file

ls list the contents of the directory

rm new_file remove the file

ls list the contents of the directory

6. A little help from the shell: filename completion and history.

This is not really a command, but I wanted to share with you a couple of feature
of the operating system shell. (Note: the “shell” is the part of the OS that we
directly communicate with at the terminal.) Anytime you are typing some
command, and you need to enter the name of some file, directory or command,
it is normally not necessary to type every character. Often, all you need to do is
type the first few letters, and Linux can figure out the rest. This happens when
those first few letters already uniquely identify what you are talking about. For

8

example, if you have a directory called homework, and it is the only thing that
starts with the letter h, then typing the characters “cd h” and then hitting tab
will complete the rest of the file name.

If you ever need to repeat a command you recently issued, you can use the up
and down arrow keys to navigate your history of recent commands. If you
actually want to see a list of the commands you have typed, you can simply
type “history” and hit enter.

7. The scp and ssh commands

These are useful commands for communicating with another machine. Scp
means “secure copy” and ssh means “secure shell.”

Scp is just a generalization of cp, and the syntax is similar. The idea is that you
have an account on another machine, and somewhere in your directory
structure over there, you have a file you wish to retrieve. A typical command
may look like this: scp mmouse@server.disneyworld.edu:menu/dinner.txt .
The @ sign separates the name of the user from the hostname of the machine.
Following the : we have the name of the file, which in this case lies inside some
directory. That final ‘.’ means to copy the file to the current working directory
on this machine, just like with the cp command. As soon as you enter your scp
command, you may be prompted for a password before the file transfer can take
place.

The ssh command allows you to remotely log in to another machine.

8. The more and less commands

This is one of the most commonly used commands. With the more command,
you can view the contents of one or more text files, one screenful at a time. To
proceed through a file, press the space bar to continue to the next screenful, or
the return key to advance just a single line. You can exit from more when you
reach the end of the file, or by hitting q at any time. Typing h gives a concise
help menu for using more.

If you are looking at a small file that can fit completely on the screen, then more
will immediately exit, although you can still see the file. Experiment with these:

more /etc/motd Show me the message of the day.

more /usr/share/dict/words Show me the spell checker’s dictionary.

Believe it or not, less is similar to more, but allows a little more flexibility in
navigating a file. For example, when you reach the end of a file, less does not
automatically quit. Within less, you can use instant single-letter commands

9

such as “g” to go to the beginning of a file, or “G” to go to the end. The space
bar goes to the next page, and the “u” command goes up. To search for text
within the file, preface your search with the slash key. To exit, hit “q”.

If you simply want to dump the contents of a text file to the screen without
stopping page by page, you would use the cat command.

9. The gcc command

This is the C compiler. It is customary for a C program to have a file-name
extension of lowercase c. One note about using C compilers – by default, the
executable file is called a.out, which is sometimes not the name you want. You
can specify your own name for the executable by using the –o option, like this:
gcc –o hello hello.c. In Linux it’s customary for executable filenames not to
have an extension.

Warning! Be careful when using the –o option. The file name that immediately
follows –o will become the executable file. You will not be warned if this file
already exists. In particular, the following command would be a fatal mistake:
gcc hello.c –o hello.c. This will have the effect of compiling your program and
overwriting your source code with the executable. Your source code would be
destroyed! In short, when typing –o, be sure that what follows is simply “hello”
and not “hello.c”.

On the CS department Linux servers, it turns out that other compilers exist such
as g++ for C++, and javac for Java.

Commands for general information

1. The date command

This command prints the current date and time.

2. The cal command

If you type “cal”, it will give you the calendar for the current month. If you want
the calendar for some other month, then you need also to give the desired
month and year, such as “cal 9 2001”. If you want to see the calendar for an
entire year, you only need to give the year number, as in “cal 2002”.

Try the calendar for September 1752. Notice anything funny about this?

10

3. The man command

man stands for “manual”. This may become one of your best friends in the
UNIX world. If you ever come across some new command in UNIX you don’t
understand or just want to learn more about it, the man command can tell you
what it does. This command works like the less command. When you are
finished reading the documentation, hit “q” to exit. Try these examples:

man cal tell me what the cal command does

man mv tell me what the mv command does

man man tell me what the man command does 

Also, if you want to look for a command, but you don’t know what it’s called, use
the –k option to initiate a “keyword search”.

man -k file list commands having to do with files

man -k compiler list commands having to do with a compiler

A few miscellaneous commands

You should probably just skim this section for now. Some of these commands are a
bit advanced or not available on the machines we are currently working on. Some
commands will only make sense if you are on a multi-user system. And some
commands are simply not needed until you have done more work in the Linux
environment. For example, you don’t need to worry about running out of disk
space until you start generating some big output files, which probably won’t happen
in this class.

1. The look command

When writing some (English) document, sometimes you need to know how to
spell a word, and you don’t have time to get to a dictionary. With the look
command, give just the first few letters and the system will tell you all the
words it knows that begin with those letters. The word list is somewhat
abridged, so many English words are not included, but it does contain about
250,000 words. It does include many proper names and some abbreviations.
Try look aqua to see what words begin with these letters.

2. The diff command

If you have two files that are nearly the same, diff can tell you on which lines
they differ. The response you will get from diff is the line numbers

11

corresponding to the differing lines followed by what those lines look like. If diff
doesn’t say anything, then the two files are identical.

For example, diff one.c two.c might give output like this:

23c23
< int floor, dest, duration;

> int floor = 1, dest, duration;
41c41
< duration = SPEED;

> duration = SPEED * (dest - floor);

The output shows that the two files differ at lines 23 and 41. The “<” at the
beginning of the line refers to the first file you specified, while the lines
beginning with “>” refer to lines within the second file.

As you can see, diff is useful when you are working with two versions of the
same program, and you want to see what has changed.

Here’s another example output for a command like diff one.C two.C :

39a40,41
> printf(“going up\n\n”);
> duration = SPEED * (dest - floor);

This output indicates that the second file two.C contains two new lines (40 and
41) that are not present in the first file one.C.

If you are comparing two files that are very large and you know that there
aren’t many line-by-line differences, then you can use the –h option to make diff
go much faster.

If it turns out that there are large differences between the two files, it may be
helpful to slow down the output by sending the output through more, as in:
“diff one.c two.c | more”. The vertical bar (|) tells the system to send the
output of diff through more. This is a useful trick in general, anytime you have
a lot of output coming onto the screen.

3. The cat, head and tail commands

cat dumps a file to the screen, which is not helpful if the file is large. More
commonly cat is used for concatenating several files into one. If you still have
the files test1 and test2 in your home directory, you can try concatenating
them. Try this:

12

cat test1 test2 > combined . This command creates a new file “combined”.
Take a look at this file.

Note the ‘>’ sign when concatenating files. This symbol is used to separate the
list of files to be concatenated from the name of the new file.

By the way, here is a general rule in Linux – any time you ask the system to
create a new file for you, be sure it does not already exist, or else it will be
automatically overwritten!

head displays the first 10 lines of a file. Similarly, tail shows the last 10 lines of
a file. You can specify a different number of lines as an option like this:

head -25 time.c show me the first 25 lines of time.c

tail -40 prog2.c show me the last 40 lines of prog2.c

4. The wc command

wc stands for “word count”. It can tell you how many lines, words and
characters are contained in the files you specify. Suppose we have a file called
“prog2.c”, and we type wc prog2.c . The output would look something like this:

 162 411 2845 prog2.c

5. The grep command

This command is often used to look for a word, phrase or some other text
pattern in a file. The output from this command consists of lines from the file
that contain what you are looking for. Note that if you are searching for a
phrase, or a “word” containing special symbols, you should enclose it in quotes
before you give the file name. Some examples:

grep file wordgame.c displays lines from wordgame.c containing “file”

grep Eight /etc/motd displays lines of motd containing “Eight”

Actually, it would be even more useful if you could find out which line numbers are
being printed, especially if it you are looking in some big file. To do this, pass the
option –n, as in grep -n file unix . This will print all the lines from the file unix

13

containing the word “file”, but at the beginning of each line will be its line number.
For example, the output may look like this:

105: name of a file
220: file name.
319: does not get sent, but appears in your home directory as a file
337: name of the file you wish to create/edit.
371: executable file will be called “a.out”. You can specify a different name

6. The du and df commands

The du command can tell you how you disk space is distributed among all of
your directories or any directory you specify. Each line of output tells how much
space (measured in blocks of 1024 bytes = 1KB) is taken up by that particular
directory including all of its subdirectories.

The df command gives you an overview of the entire file system. It shows how
many kilobytes are in use and available on the memory device(s).

7. The chmod command

If you are ever in a multi-user system, this command may be useful. It will give
you some control over the security of your files. Depending on how your
account is set up, by default, when you create a new file or directory, it may be
readable by anyone who knows where your file is. The command “chmod”
stands for “change mode”. To protect your files from eavesdropping, here is
what you do:

If you only want to turn off the permissions on a single file, enter this command:
chmod 600 <filename>
The number 600 means that you have read and write privileges, and everyone
else has no access. If you are trying to protect a directory or executable, use
the number 700 instead in order to preserve execute access for yourself.

To protect an entire directory, here is how to do it:
Go up one directory level by typing the command “cd ..”. Then enter the
command:
chmod 700 <name of directory> .

8. The ps command

This command will tell you what commands you have running on the machine.
Each process will be printed one per line. At the beginning of the line is the

14

process number, and at the end of the line is the name of the command. To get
a list of all the processes running on the machine at this instant, use ps -ef .

9. The kill command

In case you need to terminate a (runaway) process, try ctrl-C. If this doesn’t
help, you need to kill the process. That’s right: in Linux you have the power to
kill (a running program, that is). Look up the process number with the ps
command, and then type kill followed by the process number. For example,
let’s say that ps shows you:

 PID TTY TIME CMD
 6641 pts/1 0:01 ksh
 6735 pts/1 0:00 sleep

In this case, to terminate the sleep process, we type kill 6735 .

