
1

CS 221 – Lab #10

This document describes today’s lab and your next programming assignment. Enjoy!

Lab: Shortest Distance

In our previous lab, we looked at the problem of finding the centroid of several points,
each with its own x/y location and weight. Today, we’ll look at a slightly different
problem. It’s important to appreciate that a minor change to a question often leads to a
significant change in how we formulate a solution. You will also practice reading input
from a file, and using built-in mathematical functions.

Suppose you wanted to organize a conference, and you wanted to make the venue as
convenient as possible for all potential attendees. The way to do this is to calculate the
weighted average distance that people would have to travel to make it to your location.
And you would need to perform this calculation for each possible location named in the
input file. When you are done processing the data, you find the location with the shortest
weighted average distance.

Note that the answer to this question is not the same thing as the centroid. For example,
if your locations were all in the Hawaiian Islands, the centroid could be in the middle of
the ocean. This might not be a good location for a conference.

The first thing to realize about this problem is that it requires a nested loop. For each
location i, we need to look at all locations j to compute the distance from i to j in order to
calculate the weighted average. In the previous program you worked on, finding the
centroid, you only need to make a single pass through the entire list of locations, and this
could be done conceptually with a single loop. Because today’s program requires a
different loop structure, you will need to think about how you want to distribute your data
among your processes, and which appropriate MPI functions to use for communication.

One minor difference today is the format of the input. I have added a name to each
location. Please download and use any of the plain text input file(s) from the lab10-
distance folder online.

Input format: tokens separated by commas. The first two tokens identify the location.
The remaining tokens are like before: x (latitude), y (longitude) and weight (population).

Distance calculation: You may use the ordinary distance formula to find the distance
between points, as if you were finding the hypotenuse of a right triangle. To convert to
miles, assume that 1 degree of x (latitude) is 69 miles. And assume that 1 degree of y
(longitude) is 69 times the cosine of the average x (latitude) between the two points. For
example if the two points are at latitudes 30 and 40, you would need the cosine of 35

2

degrees. Use the built-in square root and cosine functions. Also, be sure to convert your
degrees to radians before using cosine. Finally, you need to compile your program with
the –lm option in order for your program to include the math library.

Output: When your program is done, please print out all of the locations, each with its
weighted average distance. Finally, tell the user which location was the most convenient.

Compare the output of today’s shortest distance program with your centroid program.

Programming assignment #2 – “Letters Game” – due 5:00pm on Friday 5/26.

If you have ever played the board game Scrabble or the online game Apterous, you know
that the main skill of the game is knowing some fairly long words when given a random
selection of letters. It’s not practical to memorize the entire dictionary, though some
people try! So, to excel at word games like this, it is helpful to know which long words
are more likely to turn up and be useable in the game.

Specifically, you will write a (parallel) program that analyzes the following letters game
scenario. In the game, a selection of letters is a random collection of 9 letters, of which
either 3, 4, or 5 letters must be vowels. Given a selection, we would like to know which
words can be formed using the letters in the selection. For example, the selection
(S,M,T,E,I,O,R,E,U) can yield the possible 8-letter words TIRESOME, EMERITUS,
MISROUTE and MOISTURE. But no 9-letter word is possible. The longer your word is that
you can find, the more points you can receive. For example, in Apterous, if you find an 8-
letter word and your opponent only finds a 7-letter word, you get 8 points and your
opponent gets nothing.

Your program will not play the game, just analyze it in order to help players know which
words are more likely to turn up. Your program will need to run millions of trials of
generating random selections of letters. For each selection, scan the dictionary, as given
by words2.txt (see the class Web site for the latest version), to find words that can be
formed from the selection. You need to keep track of statistics for each word in the
dictionary, so that at the end of your trials we can evaluate each word to see which ones
are the best ones worth knowing for playing the game.

In order to generate a selection of letters, first decide whether the 9 letters will include 3,
4 or 5 vowels. There should be an equal probability for each. Next, it’s time to choose
the letters themselves. Use the following vowel and consonant probability distributions
(given here in percent) when choosing letters randomly:

3

A E I O U
22 30 20 19 9

B C D F G H J K L M N P Q R S T V W X Y Z
3 4 8 3 6 3 1 2 7 5 10 5 1 11 12 11 2 2 1 2 1

Your program needs to answer the following questions concerning solutions of the letters
game.

1. What are the most common words of length n, where n = 3..9?

2. What are the most common longest words? In other words, words that are
guaranteed to score points. For a given selection, these are the words that have
the longest length of any solution.

3. In Apterous lingo, a “darren” is a uniquely optimal solution. So, what are the most
common darrens? A word is a darren if it is the longest solution possible, and the
only solution of its length. Once you have computed darrens and equally
interesting question is: what are the most common double darrens? To be a
double darren, a word must be the uniquely longest solution, and there cannot exist
any solution word 1 letter shorter. For example, this can happen if the longest
possible solution has 7 letters, there is only one such 7-letter word, and there are
no solutions of length 6.

Output: Your program needs to produce several sorted lists of words that answer the
above questions. Each time a word is listed, you need to give the number of times that it
appears in that category. For example, if you are printing the darren list, how many
times each word appears as a darren.

1. The 1000 longest n letter solutions, for each n from 3 to 9 inclusive.

2. The 1000 most common longest solutions.

3. The 1000 most common darrens and 1000 most common double darrens.

This is a longer program than the others you have worked on. Please work on it in stages
and enjoy the experience. You may find it helpful to write the entire program in a serial
version so that you are sure that your overall C algorithm is correct, before parallelizing it.

