
1

CS 221 – Lab #11

Today we will experiment with timing our code. We’ll make extensive use of a very
simple MPI function: MPI_Wtime().

1. Return to the program you worked on earlier. For example, the recent program that
calculated shortest distances among thousands of locations. Insert the following line of
code immediately after the code that sets up MPI

start = MPI_Wtime();

2. Next, we are going to select strategic places in your code where we are going to insert more
timing probes. Each one will be associated with its own distinct variable name. Consider
the following locations:

a. After reading the input file or generating the (random) input data to start with
b. After conveying data to the other processes (e.g. Bcast or Scatter)
c. After those processes have communicated their results (e.g. Reduce or Gather)
d. The end of the program

In each case, declare a new variable, and set it equal to the difference between
MPI_Wtime() and the start value. This is because we want to keep track of the elapsed
time.

3. Add some more variables to your program, so that instead of just measuring the amount of
time since the beginning of the program, you also determine the amount of time since the
previous checkpoint.

4. At the end of your program, print the values of each of your timing values. Compile your
program. Run your program with 1 process. Which portion of your program seems to take
the most time?

5. It would be interesting to see how long a single MPI function takes to execute. For
example, at this point, you probably have a checkpoint immediately after a Scatter
operation. Insert another one immediately before it, so we can see how long a single
scattering does.

6. Re-run your program, but this time use 8 processes on 1 processor. Also run your program
with 8 processes on 8 processors. Explain how have the times changed.

Matrix computations

7. Next, let’s write a new program to practice matrix operations. We want to know how long it
takes for us to add two 32x32 matrices of integers. To simplify your work, make the
representation have a 1-D array of 32*32 elements, so we’ll pretend it’s a 2-D array. Then,
the “row i, col j” element of a is found at a[32*i + j].

2

Initialize arrays a and b to contain random values in the range (0, 1, 2, 3) each.

Have your program compute the sum of the two matrices. How long does this operation
take? When you parallelize this computation, what is the speedup?

If there is time remaining, repeat the same experiment on matrix multiplication as well.

