CS 221 — May 10

e Course objectives
— Assemble computer cluster
— Linux and C
— Practice basic parallelizing technique

e Stay tuned: | will provide some useful files for you on
http://cs.furman.edu/~chealy/cs221
 Please read chapter 1 in book.

Motivation

e Stove?

e Raspberry Piis a very inexpensive, fully functional
computer.

— Similar power to a Pentium 2 (Vintage 1998 PC) but costs
about S50.

— | did an experiment yesterday to compare a pi with my
research server. The pi was 28 times slower, but cost 140
times less.

— So, more bang for the buck!

First steps

* We can’t do any parallel programming yet until we
— Have multiple machines hooked up
— Understand how to use the operating system.
— Can write a simple program in C
e Why C?
— Most compiler research is done for this language.
— Small, efficient language; similar to Java.
e Today’s priority

— Get one Raspberry pi up and running.

Cast of characters

e A cluster will consist of
— n Raspberry Pi units
— Some way to encase the bare boards
— n SD cards to store OS, other software, and user files
— n power cords
— n power adapters
— n network (Ethernet) cords
— 1 keyboard, monitor and mouse

e We'll use the setup checklist from the University of
Southampton. Set up 1 machine first! That takes
about 2 hours.

CS 221 — May 11

* Operating system: Linux

— What is an 0S?

— Where does Linux come from?
e Clanguage

— Begin looking at the overview

— Tomorrow we’ll study this subject in earnest.
e Handouts

— Lab on Linux activities
— QOverview of C

CS 221 — May 15

 Review chapter 1
e Lab

— Show me your C programs
— Black spaghetti — connect remaining machines
— Be able to ping, ssh, and transfer files among nodes

 For tomorrow, please read sections 2.4, 3.1 and 3.2
to get ready to write real parallel programs!
— Chapter 3 contains nuts and bolts
— Chapter 2 has background material

Chapter 1 ideas

e Why is parallel computing necessary in the long run?
— Moore’s law

— Speed of light = size of chip
e |t's a problem of HW as well as SW: how?

e How can we tell if a problem could benefit well from
a parallelized solution?

Problem solving

IH

* Generally, we begin by writing an ordinary “seria
program.

— Benefits?

 Then, think of ways to redo the program to take
advantage of parallelism

— There is no automatic tool like a compiler to do all the
work for us!

— Often, the data needs to be partitioned among the
individual processors.

— Need some background software (e.g. MPI) to handle low-
level communication details.

Simple example

e Suppose we wanted to sum a large set of values.

— You are an investment firm, and your fund owns shares in
10,000 securities. What is today’s total asset value?

— Serial solution is straightforward, but a bit slow.

 Suppose we have 5 computers working on this task
at once
— Design 1 program that can shared among all 5 machines.
— What information is passed to each machine?
— What happens when they are finished?

Delegate data collection

e |t's tempting to just have the “master” node add up
all the data.

* |f you have many cores, this is not efficient

— Suppose you have 1 million securities to look up and 1,000
cores sharing the workload. Then, the master node is
receiving messages from 999 nodes (in series!), and must
add up the 1,000 values.

— As much as possible, we want results to be communicated
simultaneously.

— Let’s work out a simple scenario with 8 cores. Each
contains a number that needs to be added. How would
you do it? How would the pseudocode look?

Major principles

A good parallel solution pays close attention to 3
concepts. What do they mean? What could go
wrong?

Communication
Load balancing

Synchronization — each core is working at its own
pace, for example reading input...

CS 221 — May 16

e Overviewof2.4,3.1, 3.2
e Lab

— Do all of your machines work?
— Let’s work through simple examples in book

Parallel software

 Not much software today is currently done with
parallelism in mind. Basically limited to:
— Operating system (!)

— Databases: allowing you to modify 1 record or table, while
someone else can print out some other table

— Web browser: multimedia doesn’t cause machine to hang;
multiple tabs

Flynn’s taxonomy

A computer system can be classified based on how
many instruction and data streams it can handle
simultaneously.

— SISD (basic computing model)

— SIMD: the same program is used on a wide stream of data,
such as a vector processor

— MIMD ©: several cores or processors running
independently at the same time. Can run same program,
but not executing identical statements in lockstep.

MIMD flavors

e Shared memory model
— You can write a Java program with multiple threads
— The OS tries to put a new thread on another core.
— If not enough cores, OS performs multitasking by default.

e Distributed memory model

— Writing a program that will be run on many computers at
once, each with its own memory system, architecture and
oS!

— For convenience we have chosen to have a cluster with the
same architecture & OS on each. ©

SPMD

Not to confuse with SISD, SIMD, MIMD...

Single program multiple data: this is the way we will
write our parallel programs
— If-statement condition asks which machine we are on

A program needs to:
— Divide computational work evenly
— Arrange for processes to synchronize (wait until done)
— Communicate parameters and results.

How? By passing messages between the processes!
— We'll use MPI software (Chapter 3)

MPI

 Message Passing Interface is a library of functions to
help us write parallel C programs.

 Once you have written your parallel program,
compile and run it.
— (p. 85) mpicc —g —Wall —o mpi_hello mpi_hello.c
— (p. 86) mpiexec —n 8 ./mpi_hello

assuming you have 8 machines. You can even give it a
larger number, since it’s the number of processes you want.

(multitasking)

Code features

* Inlab I'd like you to type in programs in sections 3.1
and 3.2. Pay attention to details we’re seeing for first time.

e What's new?
— mpi.h
— MPI_Init() at beginning and MPI_Finalize() at end
(allocate & deallocate resources needed)
— MPI_Comm_size() — how many processes are running?

— MPI_Comm_rank() — which process am I? By convention O
is the master, and therestare 1, 2, ... n — 1.

— MPI_Send() and MPI_Recv() ©

Lab

Purpose: to be able to use basic MPI functions for the first
time.

Section 3.1
— Type in mpi_hello.c program
— Compile & run

Section 3.2

— integral.c given on pages 98-99. Note that you also need include files
and a function to integrate.

Answer questions 3.1 — 3.3 on page 140.

CS 221 — May 22

Warning about possibly overwriting your source code
if you call mpicc incorrectly

What would you do if the size of an array is not a
multiple of the # of processes?

Reminder on programming assignments

Section 3.5: derived data types

CS 221 — May 24

Timing (sections 2.6 and 3.6)
e Speedup ©
e Amdahl’s law
— What happens if you can’t parallelize everything
e Complexity

e Commands to put in your program to measure time

Amdahl’s law

e A factor of n improvement to some aspect of your
program doesn’t improve total performance this
much. Only applies to the feature being improved.

— Improving half of your program = you can’t expect even
to double performance.

— Ex. A factor of 10 improvement on a computation that
originally took 40% of the time. The other 60% was
unaffected. The “40” becomes 4, so the total time is 4+60

rather than 40+60. So the speedup is only 100/64 = 1.56,
not 10!

* Loss leader doesn’t bankrupt a store

Complexity

* You have 8 processors working for you. This means
up to an 8x speedup

 What works against you? Algorithm complexity

 Nested loops

— If the problem/input size is n, we must perform n? steps
— Or even n3 steps if we have 3 nested loops.

— What does this mean if we double or quadruple the input
size?

e Square matrix operations: add and multiply

2-D as 1-D

To help with the process communication, it helps to
represent our 2-D arrays as 1-D.

Much easier to dynamically allocate 1-D array. ©

In our example, we’ll assume the matrix is square, so
Size = # rows = # columns.

If you want to refer to the element at row i,column j,
then say a[i * size +j].

Timing your code

Insert a call to MPI_Wtime()

— Returns a double, representing current time in seconds

But we actually want elapsed time

— Early in program: start = MPI_Wtime()

— End of program: finish = MPI_Wtime() — start

— Any other place also: milestone = MPI_Wtime() — start
— At end, print values of all timings (from each process)

Where should we insert these timing probes?
Re-run your program with:

— 1 or multiple processes on 1 processor
— Multiple processes on multiple processors

CS 221 — May 25

e Sorting in parallel (section 3.7)
e Special algorithm: parallel version of bubble sort.
e Lab:

— Please implement a serial version of this algorithm.
— Save the parallelizing of it until tomorrow

Sort

Arrange elements of an array in order

Let’s assume we have an array of integers, to sort in
ascending order

At some point, sorting requires some elements to be
swapped

— It would be nice if these elements are “near” each other.
Why?

— Bubble sort sounds like a good starting point.

— But pure bubble sort only looks at adjacent elements.
Need a way to look “a little” farther away

Parallel sorting

We'll play with a special version of bubble sort that is
specially designed to be parallelizable.

We'll treat the 1-D array as if it’s 2-D

— Ability to compare to neighbor on right and below ©
It’s most convenient for the number of entries to be
an even perfect square.

— Eventually, we’d want each process to get an even # of
rows.

— Thus, we’ll assume the size of the array is of the form
(2pk)?, where k =1,2,3,... (even perfect square)

— For parallelizing, p = # processes. So, if p = 8, it would be
good to try 162, 322, 48, etc.

Overview

e Handout example assumes 16 entries, so we can
arrange as 2-D array (4x4).

e We'll perform several passes over the array.

— Odd number pass: Sort the rows. Even rows ascending;
odd rows descending

— Even number pass: Sort the columns. All columns sorted
in descending order.

— After each pass, see if array completely sorted. If so, quit.
— You only need about n passes, where n = # rows.

31

12

26

31

1. Sort by rows:

Example

16

20

23

19

2. Sort by columns:

18

13

32

2 5 7 31
31 26 12 3
16 19 20 |23
32 18 13 |4
3. Sort by rows:

20 |26 (31 |32
31 23 19 13
4 12 16 18
7 5 3 2

32 26 20 |31
31 19 13 23
16 18 12 |4
2 5 7

4. Sort by columns:

31 |26 (31 |32
20 |23 |19 |18
7 12 |16 |13
4 5 3 2

5. Just one more pass and we’re done! Where is our answer?

Handing each row & col

e The “inner” part of the algorithm looks at individual
rows and columns

e Odd number pass: look at rows only
— Compare elements [0] with [1]; [2] with [3]; [4] with [5]...
— Compare elements [1] with [2]; [3] with [4]
— This corresponds to handout: people looking to their right

— Careful: alternating sense

e Even number pass: look at columns only
— As with rows, look at [0] and [1], [2] with [3] etc.
— And then look at [1] with [2], [3] with [4], etc.

Lab

* Functions you may need besides main:
— Randomize — to initialize array to random data
— Sort — overview of algorithm
— Swap two integers
— Print_array_2d —to see progress as program runs

— |Is_already sorted — needed after every pass of algorithm
e The even numbered rows must be ascending, left to right
e Odd rows must be descending from left to right

e Also, lowest # on each row must be >= highest number on next
row

— Snake — to convert 2-d back into 1-d answer.

CS 221 — May 26

e Whatis it good for?
— Many trials or iterations needed for maximum precision
— Large input
— Intractable problems

* Please note:

— H2 due 5pm today
— Q2 at start of Tuesday
— H3 due next Wednesday

Redistricting

Redraw congressional district boundaries every 10
years.

The 2010 census showed 4,625,364 people in SC.
State is entitled to 7 congressional districts. But they
must be (nearly) identical in population.

660,766 per district
Precision of census is the block.

Ex. Start in one corner of state, and add up blocks
until you reach target. Continue with next district.

(Another stipulation: Voting Rights Act)

Intractable problems

Problems with no known efficient solution
See Ron Graham video, excerpt 23:45-33, 47:55-51

Subset sum problem: Given a list of numbers, is
there some subset that adds up to a target value?

Partition problem is similar: can the list be split into
2 parts that add up to the same total?

Intractable problems (3)

e String matching (“Post Correspondence Problem”)
e Given a set of dominoes

— Each contains a string on the top and bottom

— Use the dominoes so that the strings on the top and
bottom match.

— You may use each domino as many times as you like. But
there must be one domino. ©

— The solution is the sequence of dominoes (e.g. 1,2,3)

11 100 111
111 001 11

String matching, cont’d

e Can you find a solution to this one?

1 10111 10
111 10 0
Or this one?
10 011 101

101 11 011

Sudoku

Good luck!
e Methodically try all 6] |1
possible solutions one E
at a time
 Along the way, can 8 4
create some ad hoc 6
heuristics to help rule 7 9
out cases, but still a lot 5
of searching! 712
4 5

	CS 221 – May 10
	Motivation
	First steps
	Cast of characters
	CS 221 – May 11
	CS 221 – May 15
	Chapter 1 ideas
	Problem solving
	Simple example
	Delegate data collection
	Major principles
	CS 221 – May 16
	Parallel software
	Flynn’s taxonomy
	MIMD flavors
	SPMD
	MPI
	Code features
	Lab
	CS 221 – May 22
	CS 221 – May 24
	Amdahl’s law
	Complexity
	2-D as 1-D
	Timing your code
	CS 221 – May 25
	Sort
	Parallel sorting
	Overview
	Example
	Handing each row & col
	Lab
	CS 221 – May 26
	Redistricting
	Intractable problems
	Intractable problems (3)
	String matching, cont’d
	Sudoku

