
CS 221 – May 10

• Course objectives
– Assemble computer cluster
– Linux and C
– Practice basic parallelizing technique

• Stay tuned: I will provide some useful files for you on
http://cs.furman.edu/~chealy/cs221

• Please read chapter 1 in book.

Motivation

• Stove?
• Raspberry Pi is a very inexpensive, fully functional

computer.
– Similar power to a Pentium 2 (Vintage 1998 PC) but costs

about $50.
– I did an experiment yesterday to compare a pi with my

research server. The pi was 28 times slower, but cost 140
times less.

– So, more bang for the buck!

First steps

• We can’t do any parallel programming yet until we
– Have multiple machines hooked up
– Understand how to use the operating system.
– Can write a simple program in C

• Why C?
– Most compiler research is done for this language.
– Small, efficient language; similar to Java.

• Today’s priority
– Get one Raspberry pi up and running.

Cast of characters

• A cluster will consist of
– n Raspberry Pi units
– Some way to encase the bare boards
– n SD cards to store OS, other software, and user files
– n power cords
– n power adapters
– n network (Ethernet) cords
– 1 keyboard, monitor and mouse

• We’ll use the setup checklist from the University of
Southampton. Set up 1 machine first! That takes
about 2 hours.

CS 221 – May 11

• Operating system: Linux
– What is an OS?
– Where does Linux come from?

• C language
– Begin looking at the overview
– Tomorrow we’ll study this subject in earnest.

• Handouts
– Lab on Linux activities
– Overview of C

CS 221 – May 15

• Review chapter 1
• Lab

– Show me your C programs
– Black spaghetti – connect remaining machines
– Be able to ping, ssh, and transfer files among nodes

• For tomorrow, please read sections 2.4, 3.1 and 3.2
to get ready to write real parallel programs!
– Chapter 3 contains nuts and bolts
– Chapter 2 has background material

Chapter 1 ideas

• Why is parallel computing necessary in the long run?
– Moore’s law
– Speed of light  size of chip

• It’s a problem of HW as well as SW: how?

• How can we tell if a problem could benefit well from
a parallelized solution?

Problem solving

• Generally, we begin by writing an ordinary “serial”
program.
– Benefits?

• Then, think of ways to redo the program to take
advantage of parallelism
– There is no automatic tool like a compiler to do all the

work for us!
– Often, the data needs to be partitioned among the

individual processors.
– Need some background software (e.g. MPI) to handle low-

level communication details.

Simple example

• Suppose we wanted to sum a large set of values.
– You are an investment firm, and your fund owns shares in

10,000 securities. What is today’s total asset value?
– Serial solution is straightforward, but a bit slow.

• Suppose we have 5 computers working on this task
at once
– Design 1 program that can shared among all 5 machines.
– What information is passed to each machine?
– What happens when they are finished?

Delegate data collection

• It’s tempting to just have the “master” node add up
all the data.

• If you have many cores, this is not efficient
– Suppose you have 1 million securities to look up and 1,000

cores sharing the workload. Then, the master node is
receiving messages from 999 nodes (in series!), and must
add up the 1,000 values.

– As much as possible, we want results to be communicated
simultaneously.

– Let’s work out a simple scenario with 8 cores. Each
contains a number that needs to be added. How would
you do it? How would the pseudocode look?

Major principles

• A good parallel solution pays close attention to 3
concepts. What do they mean? What could go
wrong?

• Communication
• Load balancing
• Synchronization – each core is working at its own

pace, for example reading input…

CS 221 – May 16

• Overview of 2.4, 3.1, 3.2
• Lab

– Do all of your machines work?
– Let’s work through simple examples in book

Parallel software

• Not much software today is currently done with
parallelism in mind. Basically limited to:
– Operating system (!)
– Databases: allowing you to modify 1 record or table, while

someone else can print out some other table
– Web browser: multimedia doesn’t cause machine to hang;

multiple tabs

Flynn’s taxonomy

• A computer system can be classified based on how
many instruction and data streams it can handle
simultaneously.
– SISD (basic computing model)
– SIMD: the same program is used on a wide stream of data,

such as a vector processor
– MIMD : several cores or processors running

independently at the same time. Can run same program,
but not executing identical statements in lockstep.

MIMD flavors

• Shared memory model
– You can write a Java program with multiple threads
– The OS tries to put a new thread on another core.
– If not enough cores, OS performs multitasking by default.

• Distributed memory model
– Writing a program that will be run on many computers at

once, each with its own memory system, architecture and
OS!

– For convenience we have chosen to have a cluster with the
same architecture & OS on each. 

SPMD

• Not to confuse with SISD, SIMD, MIMD…
• Single program multiple data: this is the way we will

write our parallel programs
– If-statement condition asks which machine we are on

• A program needs to:
– Divide computational work evenly
– Arrange for processes to synchronize (wait until done)
– Communicate parameters and results.

• How? By passing messages between the processes!
– We’ll use MPI software (Chapter 3)

MPI

• Message Passing Interface is a library of functions to
help us write parallel C programs.

• Once you have written your parallel program,
compile and run it.
– (p. 85) mpicc –g –Wall –o mpi_hello mpi_hello.c
– (p. 86) mpiexec –n 8 ./mpi_hello

assuming you have 8 machines. You can even give it a
larger number, since it’s the number of processes you want.
(multitasking)

Code features

• In lab I’d like you to type in programs in sections 3.1
and 3.2. Pay attention to details we’re seeing for first time.

• What’s new?
– mpi.h
– MPI_Init() at beginning and MPI_Finalize() at end

(allocate & deallocate resources needed)
– MPI_Comm_size() – how many processes are running?
– MPI_Comm_rank() – which process am I? By convention 0

is the master, and the rest are 1, 2, … n – 1.
– MPI_Send() and MPI_Recv() 

Lab

• Purpose: to be able to use basic MPI functions for the first
time.

• Section 3.1
– Type in mpi_hello.c program
– Compile & run

• Section 3.2
– integral.c given on pages 98-99. Note that you also need include files

and a function to integrate.

• Answer questions 3.1 – 3.3 on page 140.

CS 221 – May 22

• Warning about possibly overwriting your source code
if you call mpicc incorrectly

• What would you do if the size of an array is not a
multiple of the # of processes?

• Reminder on programming assignments

• Section 3.5: derived data types

CS 221 – May 24

Timing (sections 2.6 and 3.6)
• Speedup 
• Amdahl’s law

– What happens if you can’t parallelize everything

• Complexity
• Commands to put in your program to measure time

Amdahl’s law

• A factor of n improvement to some aspect of your
program doesn’t improve total performance this
much. Only applies to the feature being improved.
– Improving half of your program  you can’t expect even

to double performance.
– Ex. A factor of 10 improvement on a computation that

originally took 40% of the time. The other 60% was
unaffected. The “40” becomes 4, so the total time is 4+60
rather than 40+60. So the speedup is only 100/64 = 1.56,
not 10!

• Loss leader doesn’t bankrupt a store

Complexity

• You have 8 processors working for you. This means
up to an 8x speedup

• What works against you? Algorithm complexity
• Nested loops

– If the problem/input size is n, we must perform n2 steps
– Or even n3 steps if we have 3 nested loops.
– What does this mean if we double or quadruple the input

size?

• Square matrix operations: add and multiply

2-D as 1-D

• To help with the process communication, it helps to
represent our 2-D arrays as 1-D.

• Much easier to dynamically allocate 1-D array. 

• In our example, we’ll assume the matrix is square, so
size = # rows = # columns.

• If you want to refer to the element at row i,column j,
then say a[i * size + j].

Timing your code

• Insert a call to MPI_Wtime()
– Returns a double, representing current time in seconds

• But we actually want elapsed time
– Early in program: start = MPI_Wtime()
– End of program: finish = MPI_Wtime() – start
– Any other place also: milestone = MPI_Wtime() – start
– At end, print values of all timings (from each process)

• Where should we insert these timing probes?
• Re-run your program with:

– 1 or multiple processes on 1 processor
– Multiple processes on multiple processors

CS 221 – May 25

• Sorting in parallel (section 3.7)
• Special algorithm: parallel version of bubble sort.
• Lab:

– Please implement a serial version of this algorithm.
– Save the parallelizing of it until tomorrow

Sort

• Arrange elements of an array in order
• Let’s assume we have an array of integers, to sort in

ascending order
• At some point, sorting requires some elements to be

swapped
– It would be nice if these elements are “near” each other.

Why?
– Bubble sort sounds like a good starting point.
– But pure bubble sort only looks at adjacent elements.

Need a way to look “a little” farther away

Parallel sorting

• We’ll play with a special version of bubble sort that is
specially designed to be parallelizable.

• We’ll treat the 1-D array as if it’s 2-D
– Ability to compare to neighbor on right and below 

• It’s most convenient for the number of entries to be
an even perfect square.
– Eventually, we’d want each process to get an even # of

rows.
– Thus, we’ll assume the size of the array is of the form

(2pk)2, where k = 1,2,3,… (even perfect square)
– For parallelizing, p = # processes. So, if p = 8, it would be

good to try 162, 322, 482, etc.

Overview

• Handout example assumes 16 entries, so we can
arrange as 2-D array (4x4).

• We’ll perform several passes over the array.
– Odd number pass: Sort the rows. Even rows ascending;

odd rows descending
– Even number pass: Sort the columns. All columns sorted

in descending order.
– After each pass, see if array completely sorted. If so, quit.
– You only need about n passes, where n = # rows.

Example
31 2 7 5

12 26 31 3

16 20 23 19

18 4 13 32

2 5 7 31

31 26 12 3

16 19 20 23

32 18 13 4

32 26 20 31

31 19 13 23

16 18 12 4

2 5 7 3

20 26 31 32

31 23 19 13

4 12 16 18

7 5 3 2

31 26 31 32

20 23 19 18

7 12 16 13

4 5 3 2

1. Sort by rows:

3. Sort by rows:

2. Sort by columns:

4. Sort by columns:

5. Just one more pass and we’re done! Where is our answer?

Handing each row & col

• The “inner” part of the algorithm looks at individual
rows and columns

• Odd number pass: look at rows only
– Compare elements [0] with [1]; [2] with [3]; [4] with [5]…
– Compare elements [1] with [2]; [3] with [4]
– This corresponds to handout: people looking to their right
– Careful: alternating sense

• Even number pass: look at columns only
– As with rows, look at [0] and [1], [2] with [3] etc.
– And then look at [1] with [2], [3] with [4], etc.

Lab

• Functions you may need besides main:
– Randomize – to initialize array to random data
– Sort – overview of algorithm
– Swap two integers
– Print_array_2d – to see progress as program runs
– Is_already_sorted – needed after every pass of algorithm

• The even numbered rows must be ascending, left to right
• Odd rows must be descending from left to right
• Also, lowest # on each row must be >= highest number on next

row

– Snake – to convert 2-d back into 1-d answer.

CS 221 – May 26

• What is it good for?
– Many trials or iterations needed for maximum precision
– Large input
– Intractable problems

• Please note:
– H2 due 5pm today
– Q2 at start of Tuesday
– H3 due next Wednesday

Redistricting

• Redraw congressional district boundaries every 10
years.

• The 2010 census showed 4,625,364 people in SC.
State is entitled to 7 congressional districts. But they
must be (nearly) identical in population.

• 660,766 per district
• Precision of census is the block.
• Ex. Start in one corner of state, and add up blocks

until you reach target. Continue with next district.
• (Another stipulation: Voting Rights Act)

Intractable problems

• Problems with no known efficient solution

• See Ron Graham video, excerpt 23:45-33, 47:55-51

• Subset sum problem: Given a list of numbers, is
there some subset that adds up to a target value?

• Partition problem is similar: can the list be split into
2 parts that add up to the same total?

Intractable problems (3)

• String matching (“Post Correspondence Problem”)
• Given a set of dominoes

– Each contains a string on the top and bottom
– Use the dominoes so that the strings on the top and

bottom match.
– You may use each domino as many times as you like. But

there must be one domino. 
– The solution is the sequence of dominoes (e.g. 1,2,3)

11
111

100
001

111
11

String matching, cont’d

• Can you find a solution to this one?

1
111

10111
10

10
0

10
101

011
11

101
011

Or this one?

Sudoku

• Methodically try all
possible solutions one
at a time

• Along the way, can
create some ad hoc
heuristics to help rule
out cases, but still a lot
of searching!

Good luck!
6 1 4 5

8 3 5 6
2 1
8 4 7 6

6 3
7 9 1 4
5 2

7 2 6 9
4 5 8 7

	CS 221 – May 10
	Motivation
	First steps
	Cast of characters
	CS 221 – May 11
	CS 221 – May 15
	Chapter 1 ideas
	Problem solving
	Simple example
	Delegate data collection
	Major principles
	CS 221 – May 16
	Parallel software
	Flynn’s taxonomy
	MIMD flavors
	SPMD
	MPI
	Code features
	Lab
	CS 221 – May 22
	CS 221 – May 24
	Amdahl’s law
	Complexity
	2-D as 1-D
	Timing your code
	CS 221 – May 25
	Sort
	Parallel sorting
	Overview
	Example
	Handing each row & col
	Lab
	CS 221 – May 26
	Redistricting
	Intractable problems
	Intractable problems (3)
	String matching, cont’d
	Sudoku

