
Amdahl’s Law

If you are only able to speed up a portion of your program, the overall improvement is going to
be a lot less than you might think! For example, if we can make half of a program run 10 times
faster, does this mean that the program overall will run 5 times faster? Unfortunately not.

Suppose we have i instructions, each taking t time units to execute. Then, the execution time is
i*t.

Next, suppose that for a proportion, p, of the program (0 < p < 1), we can reduce the execution
time by a factor of n. In other words, that part of the program experiences a speedup of n.

What is the new execution time? Let’s split up the program into two parts, the part that
improves, and the part that does not.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡 + 𝑠𝑠𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑒𝑒 𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡

= 𝑡𝑡 ∗ 𝑖𝑖 ∗ �
𝑡𝑡
𝑖𝑖
� + 𝑡𝑡 ∗ (1 − 𝑖𝑖) ∗ 𝑡𝑡

= 𝑡𝑡 ∗ 𝑡𝑡 ∗ (
𝑖𝑖
𝑖𝑖

+ 1 − 𝑖𝑖)

We can now calculate the speedup of the program as a whole. It is the old execution time
divided by the new execution time.

𝑠𝑠𝑖𝑖𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖 =
𝑡𝑡 ∗ 𝑡𝑡

𝑡𝑡 ∗ 𝑡𝑡 ∗ (𝑖𝑖𝑖𝑖 + 1 − 𝑖𝑖)
=

1
𝑖𝑖
𝑖𝑖 + 1 − 𝑖𝑖

Let’s look at a numerical example. Assume we have i = 1,000 instructions, p = 0.75, and t = 10
nanoseconds. Note that the speedup formula does not use i or t. In this case, the speedup can
be written in terms of n:

𝑠𝑠𝑖𝑖𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖 =
1

0.75
𝑖𝑖 + 0.25

=
4𝑖𝑖
𝑖𝑖 + 3

So, if n = 8, then the speedup is 32/11, which is about 2.9. This is nowhere near 8!

1. What is the theoretical maximum speedup? Does this answer make intuitive sense to you?
2. It turns out that the theoretical maximum speedup is a function of p. What is it?
3. For example, if you aim to improve 10% of the code, what is the best possible speedup you

could achieve?
4. If you could improve 25% of the code, what is the best possible speedup?
5. If you are able to double the speed of 10% of the code, what is the speedup of the program

overall?
6. Going back to the example at the top of the page, what is the overall speedup if it’s not 5x?

