CS 231 - Homework \#1 - Due March 16, 2022 at the beginning of class

This assignment consists of questions regarding floating-point representations. For each question, it is not sufficient to give just a numerical answer. Explain your reasoning carefully and thoroughly.

1. In class, we saw that the largest single-precision real number is $2^{128}-2^{104}$. Use the same reasoning to determine the largest double-precision real number. Assume that the exponent occupies 11 bits, and its bias is 1023 .
2. We also saw that the smallest positive number that can be represented in single precision is $2^{-149}$. Use the same reasoning to derive the value of the smallest positive number in double precision.

For questions $3-5$, suppose you write a program that adds 1 plus $1 / 2$ plus $1 / 3+1 / 4+1 / 5$ and so on, and stops when the sum no longer changes. This program would use two floating-point variables: one that keeps track of the sum, and another to keep track of the next number to add in the series. For questions 3 and 4, you might find it useful to write a short program (in any language) to experiment with this summation, but you do not need to turn in this program. You may also find the following approximation useful. Note that $\gamma$ (gamma) is a transcendental number near 0.5772.

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{n}=\gamma+\ln (n)
$$

3. What will the final sum be if the floating-point values are represented as single-precision numbers?
4. What will the final sum be if the floating-point values are represented as double-precision numbers?
5. If there is no limit to how much space is used to store the floating-point numbers, the program will never terminate. How long will it take for the sum to exceed 100.0? Assume that we can add 4 million terms of the series each second.
