Representing Integers

Before we can examine the ways in which numbers are manipulated through arithmetical
operations, we need to understand how numbers are represented. We'll start by looking at
integer representation schemes. In the examples that follow, we'll assume a 5-bit
representation for simplicity.

1. Unsigned - all bits represent powers of 2.
You already know this one: Unsigned representation is just what we have typically called
the generic “binary” representation.

To determine the value of an unsigned number, add up the powers of 2 wherever you see a
1 in the bit pattern. For example, unsigned 11001 equals 2% + 23 + 2° = 25,

To express a number in unsigned, we simply have to find out what powers of 2 make up the
number (or you can use the base 10 to base 2 conversion algorithm).

The big problem with unsigned is that we can’t represent negative values. The other 4
representation schemes attempt to address this problem. They differ in how they come up
with representations for negative numbers.

2. Sign-magnitude - much like unsigned, except the leftmost bit becomes the sign bit.
Because the leftmost bit no longer represents a large power of 2, we sacrifice some very
large numbers for the sake of being able to represent negative numbers.

sign bit = 0 means positive number
sign bit = 1 means negative number

Besides the sign bit, the way to “encode” or “decode” numbers is the same as in unsigned.
For example, 11001 = - (2° + 29 = -9,

The major disadvantage for sign-magnitude is that there are 2 possible representations for
zero, either all zeros, or a 1 followed by all zeros. In other words, we have both a positive
and a negative zero. Thus, comparing a number to zero (which is a common operation)
becomes unnecessarily more complicated.

3. One’s-complement - to find the negative, invert all the bits.
For positive numbers, the representation is the same as unsigned.

But again we have 2 representations for zero: either 00000, or 11111.

4. Two’s complement - to find the negative, invert all the bits and add 1.

By adding 1 to find the negative, this gets rid of the duplicate zero problem. For example,
00000 is still the representation for 0. But what about 11111? It's a negative number, so
find its opposite by inverting all the bits (to obtain 00000) and adding 1 (to obtain 00001)...
and the result is +1, which means the 11111 represents -1.

One thing to note is that in 2's complement, we have one more negative number than
positive.



5. Biased - subtract a number from the unsigned range.

In order to work with a biased representation, you need to know what the bias is. Usually,
it will be half the size of the whole range, because we want about half of the numbers to be
negative. For example, with 5 bits, there are 32 values that can be represented, so a
common bias would be 16. Since the unsigned range is 0 to 31, we subtract 16 to find that
the range of values for biased-16 is -16 to 15, the same as in 2's complement.

To find the biased-representation of n: add the bias, and then find the unsigned
representation of (n + bias). For example, to find the 5-bit biased-16 representation of 7,
this will be the same as the unsigned representation of 7+16=23, which is 10111.

Given a biased representation, to determine the value: first find out what the number
would have been in unsigned, then subtract the bias. For example, if we are given the bit
pattern 01110 and are told this is a 5-bit biased-16 number, we note that if it were
unsigned it looks like 14, and subtracting the bias gives 14 - 16 = -2.

I usually find the above 2 paragraphs confusing, and it's not hard to confuse when to add
versus subtract the bias. I recommend that you write out a chart like the following example
so that you see where your number falls within the total range of values (assuming 5 bits
with a bias of 16):

Bit pattern  Value if unsigned Value if biased

00000 0 -16
01001 S =7
11111 31 15

Fill out the top and bottom lines first, so you are familiar with what the smallest and largest
numbers look like. Then put the number (or bit pattern) in question in the middle. Notice
that the biased value = (unsigned value — bias) because this is just the definition of the
biased representation. Or equivalently, the unsigned value = (biased value + bias).
Instead of memorizing these formulas, you can just write out the chart and have confidence
that you are right.

Summary: range of values for 5 bits

rep'n smallest value largest value general range
unsigned 00000 = 0 11111 = 31 0 to 2" -1
sign-magnitude 11111 = -15 01111 = 15 -(2""'-1)to 2" t-1
1's complement 10000 = -15 01111 = 15 -(2""'-1)to 2""'-1
2's complement 10000 = -16 01111 = 15 -2n-1 to 2"t -1
biased-16 00000 = -16 11111 = 15 21! to 2""1-1



value unsigned sign-magnitude 1's comp 2's comp biased-16

-16 10000 00000
-15 11111 10000 10001 00001
-14 11110 10001 10010 00010
-13 11101 10010 10011 00011
-12 11100 10011 10100 00100
-11 11011 10100 10101 00101
-10 11010 10101 10110 00110
-9 11001 10110 10111 00111
-8 11000 10111 11000 01000
-7 10111 11000 11001 01001
-6 10110 11001 11010 01010
-5 10101 11010 11011 01011
-4 10100 11011 11100 01100
-3 10011 11100 11101 01101
-2 10010 11101 11110 01110
-1 10001 11110 11111 01111
0 00000 00000 00000 00000 10000
1 00001 00001 00001 00001 10001
2 00010 00010 00010 00010 10010
3 00011 00011 00011 00011 10011
4 00100 00100 00100 00100 10100
5 00101 00101 00101 00101 10101
6 00110 00110 00110 00110 10110
7 00111 00111 00111 00111 10111
8 01000 01000 01000 01000 11000
9 01001 01001 01001 01001 11001
10 01010 01010 01010 01010 11010
11 01011 01011 01011 01011 11011
12 01100 01100 01100 .~ 01100 11100
13 01101 01101 01101 01101 11101
14 01110 01110 01110 01110 11110
15 01111 01111 01111 01111 11111
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111




