
CS 231 – Lab #9 – Simple Cache Simulation

In class, we looked at the behavior of caches. Today in lab you will be working on a high-level
language program that follows the same steps you did by hand, but now in a more automated
fashion. The cache we will model today is just like the “small” cache example we have been
working with: 8 lines and 4 words per line. However, the program is written so that other
cache sizes are possible, but in testing you may focus on just this one size.

Log in as usual. On your USB drive or account, create a new folder called lab9, and do all your
work in there. On the class Web site, you should find a folder called lab9. You should
download the test input files 1.txt, 2.txt and 3.txt. I have also provided incomplete
implementations for you to finish. If you prefer Python, then use cache.py. If you prefer Java,
then you will need these 3 files: Driver.java, Program.java, and Cache.java. Whichever
language you use, the total amount of code to add will be about the same. If you are using
Java, then all of the code you need to write will be in Cache.java.

Here are the major steps of the program. Most of the implementation has already been done
for you. But two important parts are missing. They are identified by comments in the code.

1. Initialize the cache. We can represent the cache contents as a 2-dimensional array or
list. And the set of tags can be represented as a 1-dimensional array or list. An
important part of the implementation has been left for you to finish: Inside cache.py
or Cache.java you should see a function called calcBits. The purpose of this function is
to determine the number of bits to assign to the tag, the line number, and the word
number. These values need to be calculated based on the cache configuration (number
of lines in the cache, and the number of words per line).

2. We read the input. The input consists of a list of hexadecimal addresses, each of which
represents the address of something in memory we could be fetching. These addresses
will be stored in a collection. In cache.py, this is the “list”. In Cache.java, we use a
LinkedList to hold the addresses. A ListIterator object is used to traverse the list. To
save you some time, the code as currently written has already obtained the appropriate
address from the list for you to process inside the run() method.

3. Now we are ready to run the simulation. For each address, you need to determine if it is
a hit or miss in cache. This is the 2nd part of the program you need to finish. Your
program should count the total number of hits and misses. (These variables have
already been declared.) If a miss, then your program must also bring in the appropriate
line into cache. I have included code that will print the contents of the cache. For now,
it is guarded with “if true …” – please change the if condition so that we only print the
cache state when there is a miss.

4. When the simulation is over, we print the final results of the simulation – the total

number of hits and misses, as well as the miss rate. The miss rate is defined as the
percentage of memory accesses that were misses.

As you work on your implementation, you should focus just on input files 1.txt and 2.txt. The
input file 3.txt is much longer, and you should only attempt that one when you think your
implementation is finished.

