loop.s -- example for branch prediction in hardware.

.text
main:
1i $s1, 1 # 1
outer:
1li $s2, 1 # 2 ###### begin outer loop
inner:
1i $vo, 1 # 3 # #H##### begin inner loop
move al, Ss2 # 4 # #
syscall # 5 # #
addi $s2, $s2, 1 # 6 # #
slti $t0, $s2, 11 # 7 # #
bnez $t0, inner # 8 # #H##### end of inner loop
addi $s1, $s1, 1 # 9 #
slti $to, $s1, 11 # 10 #
bnez $t0, outer # 11 ###### end of outer loop
1i svo, 10 # 12
syscall # 13

Behavior of instruction #8, which is a conditional branch instruction:

taken 9 times \

fall thru once \

taken 9 times \

fall thru once } There are 10 outer iterations, so the branch

o / 1s taken 90 times and falls thru 10 times.

taken 9 times /

fall thru once [/

T

If our branch prediction strategy is "always assume fall thru", then we are
correct 10 times out of 100 (10%), which is pretty poor performance.

If our branch prediction strategy is to use a 1-bit predictor:
We initially assume the branch is fall thru.

Reality: TTTTTTTTT TTTTTTTF TTTTTTTTTE ... TTTTTTTTTF
Predict: TTTTTTTT TLTLTTTTT FITTTTTTTT .. ETTTTITTTT
wrong - * * % * % * * *

So we will be wrong 20 times 80/100 correct = 80%.

Il
Il

If our strategy uses a 2-bit predictor, again assume initially fall thru.

Reality: TTTTTTTTTF TTTTTTTTTF TTTTTTTTTF ... TTTTTTTTTF
Predict: FFTTTTTTTT TTTTTTTTTT TTTTTTTTTT ... TTTTTTTTTT
wrong : * % * * * *

e T o e e ooy

So we will be wrong 12 times == 88/100 correct = 88%.

