
Multiple conditions

To compile if-statements that use multiple conditions joined by AND (&&) or OR (||), we can accomplish
this in assembly by using consecutive branch instructions.

As an example, consider a HLL if statement featuring two conditions joined by OR.

if (a == b || c > d)
 e = 1;
else
 e = 2;

Let’s depict this logic using a flow chart. This may help inspire the proper branch instructions.

The key is to ask ourselves when we need to evaluate both conditions. Here, when do we need to
evaluate both the “a == b” and the “c > d”? Because of the OR between them, it is when the first
condition is false. When a == b is false, we need to fall through. Thus, when a == b is true, we need to
branch. If a == b is branching, then it has to branch to the “then” clause of the if statement.

To minimize confusion, I recommend that both branch instructions have the same destination. So, our
“pseudocode assembly” code now looks like this:

 beq a, b, yes
 bgt c, d, yes
 e = 2
 j endif
yes:
 e = 1
endif:

Notice that the sense of the two branch instructions is the same as the HLL code. In other words, the
original == and > correspond to the branch instructions beq and bgt. Finally, we can allocate registers
s1 through s5 to correspond to a through e. Now our code is:

 beq $s1, $s2, yes
 bgt $s3, $s4, yes
 li $s5, 2
 j endif
yes:
 li $s5, 1
endif:

a == b ? c > d ?

e = 1 e = 2

No

Yes

Yes

No

What if the two conditions are joined by an && instead of || ? Here is the HLL code and corresponding
flow chart:

if (a == b && c > d)
 e = 1;
else
 e = 2;

We need to ask ourselves: When would we need to evaluate both conditions? Because of the AND
between them, it’s when the first condition is true. We want to fall through when a == b is true. That
means we branch when a == b is false, i.e. when a != b. We want to branch to the “else” part of the
code. Therefore, we need to write the first condition using bne. The second condition c > d is false
when c <= d, so we write the second condition using ble. Our pseudocode becomes:

 bne a, b, no
 ble c, d, no
 e = 1
 j endif
no:
 e = 2
endif:

Notice that in this case, the HLL relational operators have been reversed. The == and > now correspond
to the branch instructions bne and ble. And after allocating registers, we obtain:

 bne $s1, $s2, no
 ble $s3, $s4, no
 li $s5, 1
 j endif
no:
 li $s5, 2
endif:

a == b ? c > d ?

e = 2 e = 1

Yes

No

No

Yes

