Multiple conditions

To compile if-statements that use multiple conditions joined by AND (&&) or OR (| |), we can accomplish
this in assembly by using consecutive branch instructions.

As an example, consider a HLL if statement featuring two conditions joined by OR.

if (a == [l ¢ > d)
e = 1;

else
e = 2;

Let’s depict this logic using a flow chart. This may help inspire the proper branch instructions.

No

Yes No

Yes

e=1 e=2

The key is to ask ourselves when we need to evaluate both conditions. Here, when do we need to
evaluate both the “a ==b” and the “c > d”? Because of the OR between them, it is when the first
condition is false. When a == b is false, we need to fall through. Thus, when a ==b is true, we need to
branch. If a ==b is branching, then it has to branch to the “then” clause of the if statement.

To minimize confusion, | recommend that both branch instructions have the same destination. So, our
“pseudocode assembly” code now looks like this:

beg a, b, yes
bgt ¢, d, yes

e = 2

J endif
yes:

e =1
endif:

Notice that the sense of the two branch instructions is the same as the HLL code. In other words, the
original == and > correspond to the branch instructions beg and bgt. Finally, we can allocate registers
s1 through s5 to correspond to a through e. Now our code is:

beq $s1, $s2, yes
bgt $s3, $s4, yes
1i $s5, 2
J endif

yes:
1i $s5, 1

endif:

What if the two conditions are joined by an && instead of || ? Here is the HLL code and corresponding
flow chart:

if (a == b && c > d)

e = 1;
else

e = 2;

Yes
No Yes
No
e=2 e=1

We need to ask ourselves: When would we need to evaluate both conditions? Because of the AND
between them, it’s when the first condition is true. We want to fall through when a == b is true. That
means we branch when a == b is false, i.e. when a !=b. We want to branch to the “else” part of the
code. Therefore, we need to write the first condition using bne. The second condition ¢ > d is false
when c <= d, so we write the second condition using ble. Our pseudocode becomes:

bne a, b, no
ble ¢, d, no

e =1

J endif
no:

e = 2
endif:

Notice that in this case, the HLL relational operators have been reversed. The == and > now correspond
to the branch instructions bne and ble. And after allocating registers, we obtain:

bne $sl1, $s2, no
ble $s3, $s4, no
1i $s5, 1
J endif

no:
1i $s5, 2

endif:

