D : e Fault Handling

1. The hardware traps to the kernel, saving the program counter on the
stack. On most machines, some information about the state of th
current instruction is saved in special CPU registers. :

2. An assembly code routine is started to save the general registers and
other volatile information, to keep the operating system from destroying
it. This routine calls the operating system as a procedure.

3. The operating system discovers that a page fault has occurred, and tries
to discover which virtual page is needed. Often one of the hardware
registers contains this information. If not, the operating system must
retrieve the program counter, fetch the instruction, and parse it in
software to figure out what it was doing when the fault hit.

4. Once the virtual address that caused the fault is known, the operating
system checks to see if this address is valid and the protection consistent
with the access. If not, the process is sent a signal or killed. If the
address is valid and no protection fault has occurred, the system attempts
to acquire a page frame from the list of free frames. If no frames are
free, the page replace algorithm is run to select a victim.

5. If the page frame selected is dirty, the page is scheduled for transfer to
the disk, and a context switch takes place, suspending the faulting pro-
cess and letting another one run until the disk transfer has completed. In
any event, the frame is marked as busy to prevent it from being used for
another purpose.

6. As soon as the page frame is clean (either immediately or after it is writ-
ten to disk), the operating system looks up the disk address where the
needed page is, and schedules a disk operation to bring it in. While the
page is being loaded, the faulting process is still suspended and another
user process is run, if one is available.

7. When the disk interrupt indicates that the page has arrived, the page
tables are updated to reflect its position, and the frame is marked as
being in normal state.

8. The faulting instruction is backed up to the state it had when it began and
the program counter is reset to point to that instruction.

9. The faulting process is scheduled, and the operating system returns to the
assembly language routine that called it.

10. This routine restores the registers and other volatile information, and
returns to user space to continue execution, as if no fault had occurred.

taker from Andrew Tanorbavm's Medern Operating Systerns
Prantice Hall, 1995 £ 127-128 .



