
The procedure of how the CPU's hardware processes an instruction
can be streamlined into a small number of stages.
Let's look at an example.

Note -- each step of an instruction should take 1 cycle.

loop:
lw $t2, 0($10) # inst 1
add $12, $12, $11 # inst 2
addi $10, $10, 4 # inst 3
bne $10, $13, loop # inst 4

We can write a time diagram to see what happens during each cycle

cycle fetch decode execute mem or result result comments
1 1
2 1
3 1 address calculation
4 1 load
5 1
6 2
7 2
8 2 add
9 2 update register

10 3
11 3 sign extend constant
12 3 add
13 3 update register
14 4
15 4 calculate target
16 4 compare

17 1 loop repeats
18 1
19 1
20 1
21 1

etc.

Notice we could save time if we could do multiple steps simultaneously.
For example, why do we have to wait for instruction 1 to finish before fetching instruction 2?
This is the motivation for pipelining.

	Sheet1

