
Virtual Memory

Every program pretends that it has access to a 32-bit "address space".
But, the hardware and operating system know what's really going on and just maintain the illusion.

RAM is not 4 GB, only several megabytes. For our examples, we'll assume 128 MB.
Newer machines have even larger virtual memories, such as 42-bits which would be 4 TB.

(42-bit address held in a 64-bit register where 22 bits aren't used yet)

When fetching:
if (reference is in cache - check tags)

:) cache hit --> one cycle
else if (in RAM)

:(cache miss --> 10 to 100 cycles
else

!!! page fault --> must go to disk, which could take ~ 1,000,000 cycles
and the operating system will put our program on ice

Note that RAM typically holds (parts of) many running programs at once, so it will never be big enough…

RAM acts like a "cache" for the disk.
The units of memory that we manage are called pages, rather than lines.
The size of a page is usually several kilobytes. Let's use 8 KB.

19 13 note: physical page = virtual page size
virtual page number page offset

The page table will tell us if the page
actually resides in RAM, or else
we have a page fault.

14 13

physical page number page offset

The page table itself is in memory, so this is another reason why accessing RAM is slower than cache.

Valid 14-bit physical page #
0 The size of this page table is about
1 2 * 2^21 bytes = 4 MB.
2

…
2^21 - 1

helpful table of address sizes:
When a program starts, the OS loads the data segment and text 0x 10 16 bytes
segment from disk to RAM. For example, on the MIPS, we could 0x 100 256 bytes
start with: 0x 1000 4 KB
one page of data one page of text 0x 1 0000 64 KB
0x1001 0000 0x0040 0000 0x 10 0000 1 MB
0x1001 1ffff 0x0040 1ffff 0x 100 0000 16 MB

0x 1000 0000 256 MB
A page would be sufficient to hold 2048 words (instructions). 0x1 0000 0000 4 GB
For larger programs, we would need to load more than just
one page to avoid future page faults.

look up in
page table

The way the programmer thinks… Physical memory

ffff ffff

0
1

1001 0000 my data seg

0040 1000 my text seg
0000 0000

Practice…
1. Let's break down the 32-bit addresses into virtual page number, and draw what the page table
should look like when we load in the 2 pages above.

2. What are the virtual and physical addresses of the following:
a. The 5th instruction in the program.
b. Assuming the first thing we declare is a 100-element integer array, its 5th element.

3. Repeat the above steps using a memory system that has 256 MB of RAM and 4 KB pages.

	Sheet1

