CS 25 – Homework #1 – due Monday 11th April 2005

Connect Four

Being able to write a game is a good milestone for mastering a programming language. This is because you need to be able to resolve several issues – how to represent the game (board) information internally and in the output, how to detect and perform a legal move, and how to detect a winner. Because of the complexity of a game, the logic needs to be divided among several functions. And in this program you will have practice using 2-D arrays.

The game Connect Four is a two-player game that has a board with 6 rows and 7 columns. The board is usually kept vertical so that players insert their tokens by selecting a particular column and dropping their piece in the next empty slot in that column. To win the game, you must get 4 of your tokens to line up in any row, column or diagonal, and you must prevent your opponent from doing the same. The game ends in a tie when the board is full and no one has connected four. Your assignment is to write a program in the MIPS assembly language that simulates this game.

We’ll identify the two players as single letters B and Y standing for colors, with B going first.

Your program will be interactive, and the user will be at the keyboard entering moves for both players – in other words, 2 people playing, rather than a person against the machine.

The program will need to do some error checking – making sure that the column number the player selects is in the range 1–7, and the selected column is not full. (However, you may assume that the user’s input will be an integer.) If the user’s input is invalid, then print an appropriate error message, and let the player try again. When the game is over, your program will print the final configuration of the board and announce the winner (if any). Once the game is over, the program should halt (i.e. don’t ask if the players want to play again).

The board should be declared in the data segment as an array big enough to hold 42 characters. But note that when you perform an operation on the board, you will need to work with 2-dimensional addressing: taking a row and column number and determining the offset from the base address. You may decide whether the array should be row-major or column major, but be sure to state your choice in your documentation. On each player’s turn the program should print the current board configuration and ask for a column number. When you print the board, use a period to represent a blank cell.

It is important for your source code to show good programming structure and style.

For example, you will need separate functions to do certain operations of the game, such as printing the board, getting input, inserting a piece onto the board, detecting the winner, etc. Keep in mind that another main reason why we have modularity is so we don’t have to duplicate code. Design your program first before typing code, and decide early what functions you think are appropriate to have. Use your best judgment – there is no magic number of functions you must have. For example, you may wish to combine the getting input and inserting onto the board as a single function or 2 separate functions.

Register use is an important issue when writing assembly programs. Please document the purpose of each register you use, as these comments are essential to understand what is going on. I recommend that you follow a consistent convention on register use, such as the following:

· $t0-$t9 are “temporary” registers, meaning that they may be used for any purpose at any time, and that their values are not expected to be preserved across a function call (because that function may use these registers).

· $s0-$s7 are “saved” registers, meaning that if a function uses any of these registers, their pre-existing values must be saved onto the system stack at the beginning of the function, and restored at the end of the function. This is a good idea even for a leaf routine, because often you may find that a leaf routine may sprout its own function calls. For example, you may want to call a debugging function that prints out certain registers or elements from an array.

· The first 4 parameters to a function are in $a0-$a3. I don’t think you’ll need more than 4, but if you do, use the system stack for the additional ones.

· Use $v0 for a function’s return value, and $v1 if there’s a second return value. If for some reason a function needs to “return” more than 2 values, then you should let these values be parameters on the system stack.

Example I/O:

.

.

.

.

.

.

Player B, what column do you want to try? (1-7) 4
.

.

.

.

.

. . . B . . .

Player Y, what column do you want to try? (1-7) 7
.

.

.

.

.

. . . B . . Y

Player B, what column do you want to try? (1-7) 3
.

.

.

.

.

. . B B . . Y

Player Y, what column do you want to try? (1-7) 8
Sorry, the column you chose is not a valid choice; try again.

Player Y, what column do you want to try? (1-7) 4
.

.

.

.

. . . Y . . .

. . B B . . Y

Player B, what column do you want to try? (1-7) 5
.

.

.

.

. . . Y . . .

. . B B B . Y

Player Y, what column do you want to try? (1-7) 3
.

.

.

.

. . Y Y . . .

. . B B B . Y

Player B, what column do you want to try? (1-7) 0
Sorry, the column you chose is not a valid choice; try again.

Player B, what column do you want to try? (1-7) 6
.

.

.

.

. . Y Y . . .

. . B B B B Y

The winner is B!

