CS 25 – Homework #2 – due Monday 25 April 2005

This assignment will give you practice programming with floating-point numbers, especially in an assembly language context. Recall that the MIPS assembly language has special registers and instructions for floating-point applications.

The assignment consists of 2 parts. The first part is a program, and will count 70 points. The second part, worth 30 points, has 3 discussion questions on the consequences of floating-point representation.

Part A – Computing Square Roots

Write an interactive MIPS assembly language program that computes the square root of a particular number to a specified number of decimal places. The program will ask the user for:

· the real number that we want to take the square root of, which you may assume will be non-negative, and

· a whole number representing the desired number of decimal places to report the final answer. You may assume the whole number will be in the range 0-9 inclusive.

No error checking of input is necessary.

For your program, the method of finding the square root will be Newton’s method. Your program will approximate the square root by making a sequence of guesses until the answer is “close enough”. In this discussion we will refer to the number we want the square root of as “a” and the guesses as x1, x2, x3, etc. The first guess, x1, will be one. Each subsequent guess will be determined by this equation:

xn+1 = (½) (xn + a/xn)

The iteration stops when the difference between 2 consecutive guesses (the last 2 guesses) becomes less than the acceptable error value, which depends on the number of decimal places. This error value is

e = (½) 10–n

where n is the desired number of decimal places. To show the user how the algorithm is proceeding, print each guess (including the first) to the screen, one number per line. The individual guesses do not need to be formatted in any way. When the algorithm is finished, print a sentence informing the user what the approximate square root is, and report this final answer to exactly the number of decimal places that the user specified.

Other notes:

· All floating-point numbers in this program will be in double precision.

· Your program should be modularized into procedures.

· Make sure your comments are explicit about what value each register that you use represents.

Example I/O:

Please enter a positive real number: 5
How many decimal figures of precision? 3
1

3

2.33333333333333348

2.23809523809523814

2.23606889564336342

2.2360679774999781

The square root is 2.236

Part B – Questions on floating-point computations

This part of the assignment consists of 3 questions concerning how floating-point representations can influence the execution of a program. Suppose you write a program that adds 1 plus 1/2 plus 1/3 plus 1/4 plus 1/5 and so on, and stops when the sum no longer changes. This program would use two floating-point variables: one that keeps track of the sum, and another to keep track of the next number to add in the series. For each of the following questions, it is not sufficient to give just a numerical answer. Explain your reasoning carefully and thoroughly. For questions 1 and 2, you should write a short program (in any language you wish) to experiment with this summation, but you do not need to turn in this program. You may also find the following approximation useful. (Note that γ (gamma) is a transcendental number approximately 0.5772 .)

1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n = γ + ln n

1. What will the final sum be if the floating-point values are represented as single-precision numbers?

2. What will the final sum be if the floating-point values are represented as double-precision numbers?

3. If there is no limit to how much space is used to store the floating-point numbers, the program will never terminate. How long will it take for the sum to exceed 100.0?

