1
3

CS 25 – Lab 3 – March 22, 2005 – Starting to MALfunction

Today we get a taste of modular programming in MIPS assembly language, by breaking up our work into several procedures instead of doing everything in “main”. One thing to keep in mind when using procedures is that when communicating values back and forth, the first four parameters are placed in the “a” registers $a0-$a3 before calling the procedure, and any return values are usually placed in the “v” registers $v0 and $v1. (Most of the time there’s just 1 return value, and it would go in $v0.)

Note that this register use is not a requirement, only a suggestion to aid readability. Most registers are general-purpose, which means you may use them as you please, so you may occasionally see ways of bending the register-use guidelines a bit for the sake of efficiency. But since register names look so much alike, you should bend the style rules sparingly.

An Alternative Log-In

Last week, you used putty to remotely log into a machine, and you had a basic text-based interface. In this lab, you may continue with putty, or you may want to investigate MIX (MicroImages X Server) to create a more window-like environment.

1. From the Windows Start button, Choose MiX (MiX server 5.6.

Once MIX appears, it will take up the whole screen. A copyright message will appear in the center: click on it to dismiss the message.

2. From the PC, remotely log into one of the Ultra machines. Inside this terminal window, type in the command who. One of the output lines will indicate your particular login session. To the right, you should see a machine name in parentheses, e.g. fu-131-55.furman.edu, and this refers to the name of the PC you are working on.

3. Back inside the telnet window type the following commands

csh

setenv DISPLAY your_PC_name:0.0
xterm &

4. At this point, you should notice inside the MiX window the outline of a new terminal window inside: move the mouse where you want it to go and click to make it appear. Now you have a terminal window where you can type commands to the shell. You can move it around some more and enlarge it if you like. You can type xterm& again to get more windows. Now you can do all your work in the MIX screen instead of the old telnet window (which is being covered up).

5. You are now in the world of “X” windows, which is UNIX’s answer to Microsoft Windows. Many windows-based programs you may be familiar with have X counterparts. For example, just like emacs there is a convenient editor called nedit. Invoke it by typing nedit &. (If you wanted to edit a particular file such as array.s your would type “nedit array.s &”.) The ampersand is important – it will allow you to run the editor in the background so that you can continue to type commands in the normal shell window. Once your editor window is open, you can keep it running throughout the lab.

6. As you may remember, you can use a nicer shell by typing “bash” – this shell supports file-name completion (by hitting tab). Another convenience is that bash understands what the backspace key is supposed to do (.

7. Now you are ready to download the files you need for today’s lab. First, create a new directory called lab3. Then, copy the files io.s and string.s from the directory /home/chealy/lab3 into your lab3 directory.

Input and Output Functions

1. Look carefully at the program io.s. Print a hard copy of the program so you can make notes. The purpose of this program is to ask the user to enter an integer, and then print the predecessor and successor of this integer. Also, take a look at how the procedures are called:

· The input function has no parameters but does have a return value, and this value is returned in $v0. Notice that immediately after we return from the input function, we take the return value from $v0 and put it in a more useful place.

· The output function has 2 parameters passed in as $a0 and $a1. There is no return value. In this case, notice that before we call the function, we need to initialize the parameters.

It’s a simple program, but so far it’s incomplete. Run the program so you see what it does. What did the program forget to do?

2. Add the code necessary to complete the implementation of the input function. Remember that anytime you want to perform I/O in assembly language, you need to call a particular operating system function. You specify which function you want (such as setting $v0 to 4 for printing a string), load the appropriate operand(s), and then “syscall”. How can you tell that your input function works correctly?

3. Notice that the predecessor and successor numbers are not being printed. You need to modify the output function so that these numbers are displayed. We also need to put in some newlines (“\n”) so that the output looks clean. √

Manipulating a String

A string is an array of character, rather than an array of integer. We can access elements of a string just like we have done with the other arrays, but we instead use the instructions “lb” and “sb” to load and store bytes in place of “lw” and “sw”. Also, remember that the size of a character is one byte, not 4 bytes as was the case for integers. So when we traverse the characters of a string, we need to add 1 to the address, not 4.

I recommend printing out the program string.s so you can write notes on it. This program asks the user to enter a string, and then should do the following:

a. Give the length of the string. √
b. Print the reverse of the string. √
c. Print the string with all its letters capitalized. √
You will need to complete the implementations of the functions strlen, reverse and capital. Notice that in the case of reverse and capital, since we do not want to change the original string, I’ve declared for you a 2nd string called new_string that you may use to store the modified version (reversed or capitalized) of the string.

For your convenience, I’ve inserted repeated comments showing you what the purpose of each register is. For example, $s0 is the base address of the original string, $s1 is the base address of the new/modified string. Here’s a hint for strlen: For simplicity, let’s define the end of the string to be whenever we encounter a newline character ‘\n’.

Finally, let’s experiment a little with the system stack:

· Don’t forget that since we are using some “s” registers, we need to preserve their original values on the stack.

· How would you change your program if we wanted to pass the string parameter on the stack instead of via $a0? Try this on just one of your functions.

[image: image1.jpg]

Question – why do you think this program split up the calculations into 3 different functions? Would it have been easier to do everything in one function?

