1
3

CS 25 – Lab 4 – March 29, 2005 – I/O Redirection and Shell Scripts

The focus of the lab is on using the UNIX operating system more effectively. I hope that you will be able to use some of these techniques when running and debugging the code for our upcoming homework assignments.

Up until now, all of the I/O for our programs has been interactive: you enter input at the keyboard, and the output immediately goes to the screen. But this is not a feasible approach if there is a lot of I/O, or if you want to run your program many times for testing purposes. The simple techniques we’ll explore today will get us over the hurdle.

Log into your favorite Ultra machine. I encourage you to use the MIX interface so that you can resize windows and run an editor in the background.

Create a new directory called lab4, and copy my entire directory /home/chealy/lab4 into yours. There are a lot of little files, so don’t copy them one by one.

Redirecting I/O

The Java program Count.java is short and simple. It reads characters from standard input and counts how many are capital letters. Once there is no more input, it prints the total for the user. The input loop will terminate when it reaches end of file. Compile this program using the Java compiler javac like this: “javac Count.java”. If there are no errors, this command will produce the Java byte code in a file called Count.class. Run the program interactively using the command “java Count”. You can signal the end of file by hitting return and then ctrl-D.
 Then the program should then give you the answer.

But let’s say you have a lot of input. Consider the file input.txt. How many capital letters does this file have? It is not necessary to rewrite the program. And there is certainly a faster way than typing the whole thing by hand. We basically want to put this input file into standard input. This is called redirecting, because standard input is usually the keyboard. We accomplish input redirection using the symbol <. So type this command:

“java Count < input.txt”. You have just told the operating system to run the count program, but use input.txt as the standard input instead of the keyboard.

Similarly, we can also redirect the output so that it goes into a file rather than to the screen. This is extremely useful in case there is a lot of output that cannot fit on the screen. The output redirection symbol is >. So if you type the command

“count < input.txt > output.txt”, it will do the input redirection as before, and it will also create a new file called output.txt, and put the program’s output there.

WARNING: Be very careful about the redirection operators < and >. Do not confuse them. In particular, when you use >, the file name that follows will be erased if it happens to exist already.

And it is possible to redirect the output only, if you are interested in a little interactive (keyboard) input, but expect a lot of output. In this case, we would type:

“count > output.txt”. Feel free to experiment with these combinations of redirection. You may also call your files anything you wish – I was simply using the .txt extension for clarity.

Writing and Running a Shell Script

A UNIX saleslady, Lenore,
Enjoys work, but she likes the beach more.
She found a good way
To combine work and play:
She sells C shells by the seashore.

Redirecting I/O can make program testing more convenient. But what if you want to run your program many times, each on different input files? Very often we have a situation where we have a working program, but we need to test it thoroughly to make sure we’ve handled all the special cases. This is where a shell script is handy.

A shell script (also called a batch file) is simply a text file that contains multiple UNIX commands that you want to run consecutively. For example, if you want to run a program 10 times, then the shell script would contain commands that explicitly run your program 10 times. If you find a bug in the program, you can re-edit the program, and then invoke the shell script to re-run all your test cases.

A good name for a shell script is “run” or something more descriptive. You invoke a shell script just as though it were the name of a UNIX command or executable file: just type the name of the file and hit return. Just make sure that you have execute permission on the file: you can do this by typing the command “chmod 755 run” – this makes the file accessible and executable by anybody, but only you can modify it.

We are now going to use a shell script to help us track down and isolate bugs in our program’s output.

1. Examine the program Convert.java. This program will ask the user to enter a military time, such as 0730, and then it will print it in civilian format, e.g. 7:30 am. Basically, the algorithm has to determine the hour number, the minute number, and whether it is am or pm.

2. Unfortunately, as you will find out, the program does not always work properly. It contains a few small bugs. Run the program interactively with example input like 0730 and 1420.

3. It’s tedious to run the program interactively, so let’s use a shell script. Examine the file called “run”. Please call me over if you do not understand what all these commands mean. It turns out that the 24 input files are called 0, 1, 2, …, 23. Ultimately, the output file created is called output.txt. The temporary output files like 5.out are actually deleted to save space. To run this shell script just type “run”. It may take out 15 seconds to finish. (Sometimes when you know that a shell script is going to take a long time, it’s a good idea to insert “echo” commands at certain points in the shell script just to reassure the user that there’s no infinite loop.)

4. Next, examine the file output.txt. Does the output make sense? Do you see some evidence of bugs in the program? Modify the convert.C program so that it will fix these bugs revealed in this test set. √
5. Let’s add some test cases. Create some new input files 24, 25 and 26 (more if you like) that test other possible input cases. It turns out that there is another bug that is not uncovered by cases 0-23. See if you can generate such a test situation, and then fix the bug in the program. Here’s a hint: don’t worry about any error checking of bad input, but consider the range of values for the minute. You will also need to modify the “run” script so that it runs the program with these extra input cases. Diagnose the bug and fix convert.C so that it will work correctly in all cases. √
Assembly Example

Now, let’s do the same thing with an assembly program, for example the program demo.s. This program demonstrates the effects of the 10 bitwise operators. But before we get too far here, let’s fix something. As it stands now, the menu is implemented with a long list of branch instructions. We saw another way to handle this situation using an indirect jump with a jump table. So let’s first change demo.s so that it uses an indirect jump. √
[image: image1.jpg]

It would be convenient to test this program on each of the 10 possible bitwise operators. (In fact for thorough testing we’d probably want to do more than one test case per operation.) So let’s create 10 small text files that represent the input to the program, and then write a shell script, like the “run” script from before, that will run our program 10 times.

I recommend creating a subdirectory called “demo.” Copy my demo.s program from /home/chealy/demo.s. Your first test input file, which you could call “1” could test the sll operation. If you wanted to shift the value 8 left 4 bits, the input file would say: Ring of Brodgar (Orkney Islands)

8

1

4

And the corresponding line in the “run” shell script would say:

spim –file demo.s < 1

assuming that we’d like to see the output on the screen. You may want to add some output to the program that states which operation is being performed. That way, the output of all 10 operations will be easier to interpret and verify for correctness. √

� Note: hit ctrl-D just once. If you type ctrl-D twice, the 1st ctrl-D will exit your program back to the command line, and the 2nd ctrl-D will then close your window. In general, ctrl-D is a signal that you are done with a program. You can think of the command line itself as a program, which happens to be called the “shell” whose job is to allow you to communicate with the operating system. Hitting ctrl-D in the shell means you are done with the shell, logging you out.

