1
1

CS 25 – Lab 7 – April 19, 2005 – Using the Command Line

A program usually gets its input from 2 sources: either interactively with the user, or from a file. But there is a 3rd place we can provide input: at the command line when we invoke the program. This is helpful if the amount of input is going to be small. In fact, every UNIX command works this way. For example, the cp program is designed to copy files. It takes two file names as input: the source file and destination file. The cp program does not interactively ask us “What files do you wish to copy?” We specify these file names at the command line.

We will now investigate the power of the command line. Create a directory called lab7, and then copy all the files from ~chealy/lab7 to your directory.

Consider the program Add.java. Every Java program you’ve written has had a main() function, and it’s always taken a mysterious parameter “String [] args”. Today we finally get to use this parameter. If the main() function is taking parameters, this would imply that some other “function” is calling main(). Who? Actually, when you invoke a program, it is basically the operating system (the loader program) that is calling main(). Similarly, when main() returns, it returns control to the operating system.

The argument to main() is an array of String objects, customarily called args. (short for “arguments”, and argument is another name for parameter) And because array indexing begins at zero, args[0] will be the string representing the first argument, args[1] is the 2nd argument, etc. How do we know how many arguments there are? The size of any array in Java can be found by using the “length” attribute like this: args.length. Thus, the last argument will be args[args.length – 1].

Use the javac command to compile, and run the add program by typing “java Add”. This means that we are not providing any command line arguments. The sum by default is zero.

Notice that the program is written with a loop so that it can accept as many integers as you want. Experiment with this program with various command-line input. Don’t use plus signs between arguments. Try running the program like this:

java Add 3 5 9

java Add 7 –5 0 –3

Note that this program uses the built-in Integer.parseInt() function defined in the java.io package. This function (method) belongs to the Integer wrapper class, and you can look it up at the API Web address, http://java.sun.com/j2se/1.4.2/docs/api. The parseInt() function takes a String as a parameter, and returns an int – this is perfect for what we want to do because our command-line arguments are Strings.

But the parseInt() function can get nasty on you if you don’t give it a genuine integer to parse. Try this: “java Add 6 xyz 5”. What kind of error message do you get?

You’ll need to handle the exception using try and catch. When your program detects an input error, have it print some helpful error message (such as “Argument 2 is not an integer. Continuing…”) telling the user which argument is wrong. Have the program skip this argument (since it doesn’t have a numerical value anyway) and continue with the next argument. For example, “java Add 6 xyz 5” should still report an answer of 11. √

Next, take a look at the program Range.java. Compile and experiment with this program. When you enter 2 numbers, it is supposed to print all the numbers in the range you specify (inclusive).

But what happens if you forget to provide the command line arguments, or if you only give one integer at the command line? Uh-oh! Another exception!

Modify the Range.java program so that it is robust against this type of deficient input.

For example, when you run the cp command but you don’t specify the files to copy, you automatically get an error message. The range program should print some informative error stating what is wrong, and what the proper usage is. The easiest way to do this is to first check the length of the args array, to make sure it has enough command-line arguments. √

Command Line Arguments as Options

Remember the “ls” command? This lists the files in a directory. Back in Lab #1, we saw that we could provide various options to get more information about our files. For example, “ls –t” lists the files in chronological order with the most recent file first. “ls –l” prints a long-form list of information about each file.

We can extend the range program so that it accepts options from the command line that tell the program to do different things. For example, we may want to print the numbers in ascending order or descending order.

Modify the range program so that it will take 3 command line parameters instead of two: args[0] will be either ‘-a’ for ascending or ‘-d’ for descending order. The arguments args[1] and args[2] will be the extremes of the range. But to be fully flexible, your program should handle the case where the two values are out of order. For example, “java Range –a 1 10” and “java Range –a 10 1” should give the same output.

When the number of command-line arguments is 3, then in the case of args[0], the program should also make sure that the option being selected is either a or d. Anything else is an error. Print an appropriate error message if the input is invalid in either respect – and then halt the program without printing any numbers.

Most of the time we will be interested in an ascending list, so let’s make this the default option. Only force the user to specify an option if it happens to be the descending one. So if the user types in ‘–a’ as the option, or no option at all, this will represent ascending. Modify the range program so that it can handle a default option in this manner. Early in the program you will need to determine if args.length equals 2 or 3 to decide whether the default option is in effect. √
Here are some example test cases:

java Range 5 20

prints 5 through 20

java Range –a 20 5

prints 5 through 20

java Range –d 20 5

prints 20 through 5

java Range –d 5 20

prints 20 through 5

java Range –u 5 20

prints error

java Range –a 5

prints error

Running Two Related Programs

A few weeks ago we experimented with the shell operators < and > for redirecting standard input and output. There is another operator |, called the “pipe” that takes the output of one program, and feeds it as the input into a second program.

The pipe operator is often used in UNIX. See if you can figure out the meaning of the following commands. Write your answers in the spaces provided. In case there are specific commands that you have forgotten about, use the “man” command to read their descriptions. √
ls | wc

java Add 1 3 5 7 9 | wc

java Range 1 100 | grep 8

java Range 1 100 | more

java Range 1 100 | tail

java Add 1 3 5 | java Add

[image: image1.jpg]

