1
2

CS 25 – Lab 8 – April 26, 2005 – Object-Oriented Pipeline Simulation

In class we’ve seen how an instruction’s execution is broken up into various stages, such as fetch, decode, execute, memory and write back. Today we will be running and making small modifications to a Java program that simulates these steps by printing a pipeline diagram.

The basic skill for today is being able to detect structural and data hazards. As we mentioned in class, a structural hazard usually occurs when the previous instruction is taking extra time in the EX stage. A data hazard usually occurs if the previous instruction is a load and one of our source operands is the same as the destination of the load (and not the zero register). There are other examples of hazards, but for the purpose of this lab, just focus on these two. We will not be addressing floating-point instructions or branches today.

Log in to your favorite Ultra machine. I encourage you to use the MIX interface so that you can resize windows and run an editor in the background.

Create a new directory called lab8, and copy the all the files from my lab8 directory over to your lab8 directory. You will find a Java program consisting of 4 source files (Driver.java, Pipeline.java, Program.java, Instruction.java). This is the same program you saw in the big handout. Today you’ll be modifying this program. I’ve also provided two input files called 1 and 2 for testing.

1. I recommend you become acquainted with the structure of the program as it currently stands. The main() function creates a Program object and a Pipeline object. A Program contains an ArrayList of Instruction objects. The pipeline maintains an array of stages, where each stage simply contains an Instruction object.

For the most part, you will be modifying the processCycle() function in Pipeline.java. The purpose of this function is to work on a single cycle, looking at each stage one at a time starting with WB and finishing with IF. Notice that processCycle() is called from main(), and we continue calling it until the pipeline becomes empty.

2. I have also included some sample input files called 1 and 2. The program is designed to ask the user to enter the name of the source file containing assembly instructions. It’s easier to refer to an input file than to keep typing the input interactively every time you run the simulator. Compile the program, and run the program, using file 1 as input. This input file has 3 instructions, so in the output you can see the progress of these instructions as they move through the pipeline. Input file 2 contains two instructions.

3. The purpose of the 2 input files I provided is to illustrate common hazard conditions. File 1 should have a structural hazard because of the multiply, and file 2 should have a data hazard because of the load. But right now, our simulator is not designed to handle any hazards. It assumes exactly 1 cycle per stage no matter what.

In the code, notice that I’ve put comments in the approximate places where you should add statements that detect the hazards.

First, focus on input file 1 and the structural hazard. Assume that multiplies take 11 cycles in the EX stage and divides take 34. There is more than one way to do this, but I recommend you follow the pseudocode algorithm we did in class. For example, you can use a variable called exAvailable to keep track of which cycle an execution will complete, and then refer to this time to see if the instruction in ID can move over to EX. Verify your code works by checking the result for input file 1. Instruction 1 should spend 11 cycles in the EX stage, and the other two instruction should be stalled behind it. √
4. Next, we can handle the data hazard situation. For the instruction in the ID stage, you need to see if its predecessor in EX is a load instruction, and if there is a data dependence between these two instructions. Add your code near where I’ve placed the comments for this task.

Note that you may need to make changes to the Instruction class to give you access to certain information about the instruction residing in a particular pipeline stage. For example, how can you tell if an instruction is a load instruction? How can you look up its register operands?

A more general approach would be to do the following. You can keep track of when a register is “available” with my regAvailable array. And the meaning of regAvailable is analogous to exAvailable – during what cycle will the value of this register be available via forwarding? When you are executing a load instruction, you can set this time, and then when detecting a data hazard, you can look up the “available” times of the source operands to see if you need to stall the instruction (i.e. not move it to EX).

But for the purpose of this lab, it’s not necessary to keep track of “available” times of registers, because the only data hazards we’re concerned with are loads followed by an instruction that uses the destination of a load – and we’re assuming that loads always take one cycle.

Check your solution by running the program with input file 2 (and make sure case 1 still works). You should notice a bubble in the pipeline because the 2nd instruction had to wait for the MEM stage of the 1st instruction. √
5. To test the simulator a little more thoroughly, create some more input files. They should illustrate certain situations of hazards – for example, trying a divide or rem instruction, checking the first source operand versus the second operand or both. Also make test cases to make sure you don’t incur a stall if the load instruction is loading into register $0. √
[image: image1.png]it

i T — . « — ‘ : -

