1
2

CS 25 – Lab 9 – May 3, 2005 – Object-Oriented Cache Simulation

In class we looked at the basic behavior of caches.  Today in lab you will be working on a Java program that follows the same steps you did by hand, but in a more automated fashion.  The cache we will be modeling today is just like the small cache we’ve been working with:  8 lines and 4 words per line.  However, the program is written so that other size caches are possible, but in testing you may focus on just this one size.

Log in to your favorite Ultra machine.  I encourage you to use the MIX interface so that you can resize windows and run an editor in the background.

Create a new directory called lab9, and copy the files from my lab9 directory over to your lab9 directory.  You will find two input files called 1 and 2, and three Java source files called Cache.java, Program.java and Driver.java.  Today you’ll be modifying the code in just Cache.java.

1. Please refer to the big handout with all the source code as it currently stands.  Notice that most of the important work is done in Cache.java.  There is a constructor that initializes all the information about our cache configuration.  It calls a function calcBits() whose job is to initialize certain attributes that will be useful later.  Then, there’s the run() function.  Basically what happens is this:  we read an address, need to break it up into its pieces, and then determine if it is a hit or a miss.  The simulation terminates when there are no more addresses to handle.  The list of address references is maintained by the Program class, somewhat analogous to the Program class we saw in the pipeline simulation.  Then we print some summary information about the cache:  namely the number of hits and misses, the miss rate, and the final contents of the cache (including the tags).

For your convenience I have included some sample input files called 1 and 2.  The cache simulator is designed to read from a text file.  When you run the program, it will prompt you for the name of an input file, and you can try either 1 or 2.  Later, you may find it helpful to create additional input files.


Run the program.  All it prints right now is just the summary information, which isn’t much.  
As written, the program reads all the addresses, but doesn’t do anything with them.  You will 
be making modifications so that we can model the cache behavior for a given set of memory


references.  Note the 2 places in the program where you need to add code.

2. First, go to the calcBits() function, and complete the implementation so that the values of tagBits, lineBits and wordBits are correctly determined based on the values of linesInCache and wordsPerLine.  Your code should be written so that it would still be accurate even if we change the values of linesInCache and wordsPerLine to some other powers of 2.  I recommend you use shift operators in your implementation, because these are fast instructions.  √
3. Next, write the code in the run() function that partitions the address into the 3 important parts:  tagNum, lineNum and wordNum.  To check your calculations, I recommend you temporarily print out the tag and other values to see if they are they same you get as if you had done everything by hand, just like in class.  In your implementation, you may find it again convenient to use shift operators in your computations.  √   
4. Finally, you need to write the code that tests the value of the tag and line number to see if this memory reference is a hit or a miss.  You will need to write an if-statement, and you will need to handle the cases of hit and miss.  The miss case will be somewhat more involved – this is where you need to update the cache.  It would be a good idea to call the toString() function when there is a miss so that you can see you updated the cache correctly.    √
To illustrate, here is the final output you should see when running test input file 2.  For example, the second to last reference is 0x350 or 848 in decimal, and it is a miss in cache – and we update line 5 of the cache.  Then, 0x354 (852) is a hit.

...

                                     tags

line  0:   780   784   788   78c       f

line  1:   110   114   118   11c       2

line  2:   120   124   128   12c       2

line  3:   ...   ...   ...   ...     ...

line  4:   ...   ...   ...   ...     ...

line  5:   ...   ...   ...   ...     ...

line  6:   ...   ...   ...   ...     ...

line  7:   ...   ...   ...   ...     ...

address = 1924   tag = 15   line number = 0   word number = 1

address = 1928   tag = 15   line number = 0   word number = 2

address = 296   tag = 2   line number = 2   word number = 2

address = 300   tag = 2   line number = 2   word number = 3

address = 848   tag = 6   line number = 5   word number = 0

                                     tags

line  0:   780   784   788   78c       f

line  1:   110   114   118   11c       2

line  2:   120   124   128   12c       2

line  3:   ...   ...   ...   ...     ...

line  4:   ...   ...   ...   ...     ...

line  5:   350   354   358   35c       6

line  6:   ...   ...   ...   ...     ...

line  7:   ...   ...   ...   ...     ...

address = 852   tag = 6   line number = 5   word number = 1

[image: image1.jpg]


                                     tags

line  0:   780   784   788   78c       f

line  1:   110   114   118   11c       2

line  2:   120   124   128   12c       2

line  3:   ...   ...   ...   ...     ...

line  4:   ...   ...   ...   ...     ...

line  5:   350   354   358   35c       6

line  6:   ...   ...   ...   ...     ...

line  7:   ...   ...   ...   ...     ...

Number of hits = 12   Number of misses = 8   miss rate = 40.0%







