PAGE
8

UNIX Commands

This lab supplement describes some of the more useful UNIX commands. You should keep this lab handout handy over the next several weeks until you feel more comfortable with the commands. Just one word of caution: UNIX was developed primarily for computer professionals. It was designed to get work done quickly and powerfully. Consequently, it is easy to shoot yourself in the foot if you are not careful – UNIX will do exactly what you tell it to do. For example, when you tell it to delete a file, it won’t prompt you for a confirmation – that file is gone forever! In just a few keystrokes it is possible to destroy all your files. So be especially careful when using special wild-card characters like the ‘?’ and ‘*’. (The question-mark will match any single character in a file name, and the star will match any number of characters in a file name.)

Commands for files

1. The emacs command

emacs is a text editor, which allows us to create a text file. Most often we will use an editor to write a program’s source code, or some other input file. Since we will be using UNIX as a programming environment, it is important to become comfortable with a text editor. Other text editors include pico, axe, vi and nedit.

To edit a file, simply type in emacs at the command prompt, followed by the name of the file you want to edit. For example, type in emacs test1. Since this file does not already exist, you will see it empty inside emacs. At this point, type in the following sentence:

This is my first text file created with emacs.
Also put in your name and date, and anything else you wish. The arrow keys allow you to navigate through the file, and the backspace key does what you would expect. To save your file, hit control-XS (hold the control key down while hitting x and s). Then, to quit from emacs, hit control-XC.

If you happen to have a bigger file, using the arrow keys to go up and down can be quite slow, so to move up and down faster, there are function keys for this too: alt-V goes up (about ½ page at a time) and control-V goes down.

At this point, restart emacs without specifying a file name. Now you see the emacs introductory screen, and from here I highly recommend the emacs tutorial, which you can start by hitting Control-h (h is for help) and then t (t for tutorial).

Probably the most useful part of the tutorial begins at line 325 where it discusses how to insert and delete text. (Note the current line number is displayed at the bottom of the screen next to the capital L. The percentage figure tells you how far into the document you are.)

Emacs is a very powerful editor, and early on it’s easy to do something unintentional. To cancel or abort any command in emacs, hit control-G. And again, to exit emacs, hit control-XC.

2. The ls command

This is like the “dir” command in DOS. The ls command is saying, “Please list the files that are in this directory”. Various options can give you additional information.

At the command prompt, type ls . Not much of a list, is it? Now try ls -a . When we add that option –a, this stands for “all” files, including those whose names begin with a dot. The dot-files are special files that deal with the particular characteristics of your computer account.

Now type ls -l . Here, the –l option stands for “long listing”. This provides more detailed information about each file, including its size and when it was last modified.

If you type ls -la , this combines both options: print all files, and give a long listing.

Now type ls -lat . The extra option t means to list the files in chronological order according to the date and time of their last modification.

Now type ls -latr . The option r means to list in reverse (chronological) order.

3. The pwd and mkdir commands

pwd stands for “present working directory”. If you type pwd, the system will tell you in which directory you are currently working. Since you have just recently logged in, you should still be in your home directory.

If you want to create a new directory (for example, a subdirectory within your home directory), we use the mkdir “make directory” command. So to create a directory called lab1, simply type mkdir lab1 . You can also make other directories for future labs like lab2, lab3, etc. Note that when a directory is created, it is initially empty: there are no files inside.

Now type ls to see that these new directories are in fact listed.

4. The cd command
cd stands for “change directory”. This is like the “cd” command from DOS, except that the convention in UNIX is to separate directory names with a forward slash instead of a backslash. With this command, you can navigate the directory hierarchy, or give a specific destination. Here are some examples:

UNIX command

Meaning

cd

changes to your home directory no matter where you are
cd lab1

changes to the subdirectory lab1
cd ..

goes back to the next higher directory in the hierarchy
cd /usr/local/bin
changes to the specific directory /usr/local/bin
5. The cp, mv and rm commands
cp stands for “copy”, mv stands for “move” and rm stands for “remove”.

We use the cp command in order to create another copy of the same file into the same or a different directory. First, type cd to go to your home directory. Let’s try some examples of copying files:

cp test1 first_file
creates a copy of the file with a new name
cp first_file lab1/.
creates a copy of this file and puts it in the lab1 directory

Note: the “.” means to keep the same name as the original.

Now use the cd command to go into the lab1 directory, and then type ls . Do you see the first_file there?

Now that we are in the lab1 directory, let’s copy the other text file test2 here as well. Type cp ../test2 second_file . This literally says “copy the file test2 from the parent directory and put it in here under the name second_file”.

(Please call me over any time you don’t understand what’s going on.)

The mv (move) command is used either to rename a file or to move it into another directory. The big difference between cp and mv is that mv is not making a copy.

Make sure you are in the test1 directory. Try these examples:

mv first_file 1st_file

change the name of this file
mv second_file ..

move this file back up to the home directory
Now type ls to see the changes. Do you understand what happened? Go to the home directory (either by typing cd or cd ..) and type ls there. You should notice that second_file has just been moved here.

The rm (remove) command deletes the file(s) you indicate. Once deleted, a file cannot be restored, so be very careful! Try this sequence of commands inside the lab1 directory:

ls

list the contents of the directory

cp 1st_file new_file

create a copy of the file
ls

list the contents of the directory
rm new_file

remove the file
ls

list the contents of the directory
6. The more command
This is one of the most commonly used commands. With the more command, you can view the contents of one or more text files, one screenful at a time. To proceed through a file, press the space bar to continue to the next screenful, or the return key to advance just a single line. You can exit from more when you reach the end of the file, or by hitting q at any time. Typing h gives a concise help menu for using more.

If you are looking at a small file that can fit completely on the screen, then more will immediately exit, although you can still see the file. Experiment with these:

more /etc/motd

Show me the message of the day.
more /home/chealy/unix
Show me the old UNIX handout.

7. The javac, CC, cc, gcc and spim commands
These are the compilers. javac is the Java compiler. It assumes that your source filename(s) have extension .java. Similarly, CC is the C++ compiler. It assumes that the C++ program has an extension of capital C.

Go into your lab1 directory, and use emacs to create a file called Hello.java, the classic “hello, world” program in Java. When you are finished typing, save the file and exit emacs with: control-XS and control-XC.
Now we are ready to compile. Type javac Hello.java . If you have any syntax errors, then re-edit the file Hello.java.

If there are no error messages, then the compilation was successful. Type ls. What new file was just created? To run your program, type java Hello. The java command runs the Java virtual machine. You should see your output immediately on the screen.

For the C programming language, the compilers available are cc and gcc. These work very much like CC. It is customary for a C program to have a file-name extension of lowercase c. One note about using C/C++ compilers – by default, the executable file is called a.out, which is sometimes not the name you want. You can specify your own name for the executable by using the –o option, like this: gcc –o hello hello.c. It’s customary for executable filenames not to have an extension.

For MIPS assembly language, the command we will use to run these programs is called spim. Assembly programs have file-name extension of .s. More on this later.

8. The lp command
lp is the print command. If you type lp followed by the file name, that file will be printed on the laser printer in room 203. For example, lp /etc/motd will print the message of the day.

Commands for general information

1. The date command

This command prints the current date and time.

2. The cal command

If you type “cal”, it will give you the calendar for the current month. If you want the calendar for some other month, then you need also to give the desired month and year, such as “cal 9 2001”. If you want to see the calendar for an entire year, you only need to give the year number, as in “cal 2002”.

Try the calendar for September 1752. Notice anything funny about this?

3. The man command

man stands for “manual”. This may become one of your best friends in the UNIX world. If you ever come across some new command in UNIX you don’t understand or just want to learn more about it, the man command can tell you what it does. Try these examples:

man cal

tell me what the cal command does
man mv

tell me what the mv command does
man man

tell me what the man command does (I’m not kidding.)
Also, if you want to look for a command, but you don’t know what it’s called, use the –k option to initiate a “keyword search”.

man -k file

list commands having to do with files
man -k compiler
list commands having to do with a compiler

Miscellaneous commands

Because your lab time is limited, you should probably skip this section for now, and come back to it at your leisure. Some of these commands are a bit advanced, and some commands will only make sense when you have done more work in the UNIX environment. For example, you don’t need to worry about running out of disk space until you start generating some big output files, which won’t happen for a while.

1. The bc command

bc is an on-line calculator. After typing bc, just type a numerical expression, press enter, and bc will give an answer on the next line. There are no prompts. You can continue giving expressions indefinitely. To exit, type ctrl-D.

bc can handle extremely large/precise numbers. Unfortunately, division is awkward because bc truncates remainders. For instance, 1/3 will yield 0. You can try 1000/3 and keep track of the decimal place mentally. For more precise division, put more zeros at the end of the numerator. Try this one:

100/4999

See something familiar in the output?

2. The look command

When writing some (English) document, sometimes you need to know how to spell a word, and you don’t have time to get to a dictionary. With the look command, give just the first few letters and the system will tell you all the words it knows that begin with those letters. The word list is somewhat abridged, so many English words are not included, but it does contain about 25000 words. It does include many proper names and some abbreviations. Try look aqua to see what words begin with these letters.

3. The diff command

If you have two files that are nearly the same, diff can tell you on which lines they differ. The response you will get from diff is the line numbers corresponding to the differing lines followed by what those lines look like. If diff doesn’t say anything, then the two files are identical.

For example, diff one.C two.C might give output like this:

23c23

< int floor, dest, duration;

> int floor = 1, dest, duration;

41c41

< duration = SPEED;

> duration = SPEED * (dest - floor);

The output shows that the two files differ at lines 23 and 41. The “<” at the beginning of the line refers to the first file you specified, while the lines beginning with “>” refer to lines within the second file.

As you can see, diff is useful when you are working with two versions of the same program, and you want to see what has changed.

Here’s another example output for a command like diff one.C two.C :

39a40,41

> cout << “going up\n\n”;

> duration = SPEED * (dest - floor);

This output indicates that the second file two.C contains two new lines (40 and 41) that are not present in the first file one.C.

If you are comparing two files that are very large and you know that there aren’t many line-by-line differences, then you can use the –h option to make diff go much faster.

If it turns out that there are large differences between the two files, it may be helpful to slow down the output by sending the output through more, as in:

“diff one.C two.C | more”. The vertical bar (|) tells the system to send the output of diff through more. This is a useful trick in general, anytime you have a lot of output coming onto the screen.

Assuming that you have done the section on “Using SPIM” and still have your example assembly files, go to your lab1 directory, and type:

 diff ex1.s ex2.s . Do you understand the output?

4. The cat, head and tail commands

cat dumps a file to the screen, which is not helpful if the file is large. More commonly cat is used for concatenating sever files into one. If you still have the files test1 and test2 in your home directory, you can try concatenating them. Try this:

cat test1 test2 > combined . This command creates a new file “combined”. Take a look at this file.

Note the ‘>’ sign when concatenating files. This symbol is used to separate the list of files to be concatenated from the name of the new file.

By the way, here is a general rule in UNIX – any time you ask the system to create a new file for you, be sure it does not already exist, or else it will be automatically overwritten!

head displays the first 10 lines of a file. Similarly, tail shows the last 10 lines of a file. You can specify a different number of lines as an option like this:

head -25 time.C

show me the first 25 lines of time.C
tail -40 prog2.s

show me the last 40 lines of prog2.s
5. The wc command
wc stands for “word count”. It can tell you how many lines, words and characters are contained in the files you specify. Suppose we have a file called “prog2.C”, and we type wc prog2.C . The output would look something like this:

 162 411 2845 prog2.c

6. The spell command
The system has a spell checker. To use, simply type spell followed by the name of the (English) text file. When you use this command, the output will consist of all the words it did not recognize, one per line. In addition to the misspelled words, you may find proper names and abbreviations that are not in the system’s word list.

7. The grep command

This command is often used to look for a word, phrase or some other text pattern in a file. The output from this command consists of lines from the file that contain what you are looking for. Note that if you are searching for a phrase, or a “word” containing special symbols, you should enclose it in quotes before you give the file name. Some examples:

grep file /home/chealy/unix
displays lines from unix containing “file”

grep Eight /etc/motd

displays lines of motd containing “Eight”
Actually, it would be even more useful if you could find out which line numbers are being printed, especially if it you are looking in some big file. To do this, pass the option –n, as in grep -n file unix . This will print all the lines from the file unix containing the word “file”, but at the beginning of each line will be its line number. For example, the output may look like this:

105: name of a file

220: file name.

319: does not get sent, but appears in your home directory as a file

337: name of the file you wish to create/edit.

371: executable file will be called “a.out”. You can specify a different name

8. The quota -v command

Resources such as disk space are limited, and the system keeps track of how much you are using. You can ask how much disk space your files take up with the quota -v command. Here is some example output:

Disk quotas for chealy (uid 12507):

Filesystem usage quota limit timeleft files quota limit timeleft

/home/chealy 25012 30000 0 580 0 0

This is saying that I have 25,012 kilobytes of files in my account out of a maximum allowed of 30,000K. It also says I have 580 files, and there is no file quota.

9. The du command

Whereas quota -v only gives your total disk usage, du can tell you how you disk space is distributed among all of your directories or any directory you specify. Each line of output tells how much space (measured in blocks of 512 bytes) is taken up by that particular directory including all of its subdirectories.

10. The ps command

This command will tell you what commands you have running on the machine. Each process will be printed one per line. At the beginning of the line is the process number, and at the end of the line is the name of the command. To get a list of all the processes running on the machine at this instant, use ps -ef .

11. The kill command

In case you need to terminate a (runaway) process, try ctrl-C. If this doesn’t help, you need to kill the process. That’s right: in UNIX you have the power to kill (a running program, that is). Look up the process number with the ps command, and then type kill followed by the process number. For example, let’s say that ps shows you:

 PID TTY TIME CMD

 6641 pts/1 0:01 ksh

 6735 pts/1 0:00 sleep
In this case, to terminate the sleep process, we type kill 6735 .

