
1

Computer Science 261
Discrete Structures
Fall 2022

Instructor: Dr. Chris Healy
My office is located in Room 200-G in Riley Hall. My office hours are MWF 9:30 – 10:20,
Tuesdays 1:00 – 2:15, and also by appointment. Please see me if you ever have any
questions during the course. I can be reached by phone (294-2233) and e-mail
(chris.healy@furman.edu).

Class meetings: MWF 10:30 – 11:20 a.m. and Tuesday 2:30 – 4:30 p.m. in Room 204,
Riley Hall

Purpose: Many problems that we need to solve in computer science have a significant
quantitative or logical component. The purpose of this course is to acquaint students with
quantitative techniques that are used extensively in computer science.

The prerequisite for this course is CS 121 (Introduction to Computer Science I). This class
leads into several other courses in the department: CS 122 and 223 (Data Structures), CS
343 (Artificial Intelligence), CS 344 (Computer Graphics) and CS 461 (Computational
Theory), as well as Math 330 (Combinatorics and Graph Theory).

Web site: Notes and handouts can be found here: http://cs.furman.edu/~chealy/cs261

Textbook: Discrete Mathematics with Applications, by Susanna Epp, Cengage Publishers,
fifth edition, 2019.

Grade calculation

20% Homework
 50% Average of three tests:

Test #1 – Friday September 16, 2022
Test #2 – Friday October 14, 2022
Test #3 – Wednesday November 9, 2022

30% Final exam – Monday December 12, 8:30 – 11:00 a.m.

Please note the test schedule. During the first week of class, you should submit any
appropriate documentation supporting special arrangements necessary for any test.

Homework
You should expect a short homework assignment on most days. An assignment will usually
consist of some questions from the textbook and will be due at the beginning of class on the
next class day. You may not turn in homework late since we will be going over the answers
at the beginning of class. If you are unable to submit homework because of an excused
absence, then I will give you an alternative assignment to make up the work. These written
homework exercises will be graded primarily on the basis of thoroughness, proper
technique, clarity, and neatness.

When you work homework problems, you should begin by restating the problem in your
own words. This will help you think about ways to solve the problem and how it may
compare to others you may have seen. It is also a check that you are interpreting the
problem correctly. In homework solutions, use complete sentences throughout. The final
answer is not as important as how you arrived at it and how you communicate your
approach and the steps you take.

2

Please note the following homework policy, because it may differ from other classes you
have had. Each student is required to turn in an individual homework submission. Getting
help from someone else or collaborating with another student when working on homework
is allowed. If you do get help, please include a statement at the end of your homework
paper that says who you worked with, which questions you needed help with, and to what
extent you still do not understand how to do the problem(s). Your homework grade will not
be affected by this statement. Examples of such a statement might be: “Donald Duck and
I worked on the second problem together, and now I fully understand how to do it.” Or, “I
did not know how to do the last problem. Mickey Mouse showed me how to do it, but I still
would not be able to do it myself.”

If you don’t include a statement of assistance at the end of your homework, I will assume
that you were able to complete all of the problems by yourself. The reason why I am
tracking whether you needed help on certain problems is to work with you about what you
don’t understand. My mission is to help you master all of the material of the course.

Plagiarism means receiving assistance without the proper attribution, and this will not be
allowed. Also, if you are using my collaboration policy merely as a way for other people to
do your homework for you, this will also not be allowed. Cheating penalties will be
substantial, up to and including an automatic failing grade in the course. The minimum
penalty for cheating related to homework will be a failing grade on the assignment.

Attendance
You are expected to attend every class in person. We will not have remote lessons via
Zoom unless it is impossible to conduct class normally. Furman’s attendance policy says
that if you miss more than one-quarter of the total number of class meetings, you cannot
receive credit for the course. If you are absent from a test, you will earn a score of zero,
unless your absence is excused. Excused absences include illness (doctor’s note elaborating
your incapacitation will be required), circumstances beyond your control, or a required
extra-curricular activity in which you are an official representative of the university. In any
case, you are required to submit written documentation to excuse an absence. If you know
in advance that you cannot take a test, please let me know as soon as possible so that you
can take it early. Otherwise, if you are absent from a test due to an excused absence, then
you final exam grade will be used to determine that test’s score.

Preparation
You will need to study up to 6 hours per week for this class. Study includes reviewing
notes, working problems from the textbook, becoming acquainted with the material to be
discussed in the next class, completing homework assignments and preparing for exams.
Studying on a consistent schedule each week will work far better for you than cramming
before a test. Don’t forget the most important thing – I am here for you. Please come to
my office anytime for help or advice in this course.

Course Objectives
Upon successful completion of this course, students should be able to do the following.

Logic

1. Understand the semantics of the logical operators AND, OR, NOT and implications. Write

truth tables for logic/Boolean expressions. Determine if a statement form is a tautology
or contradiction. Draw and interpret digital circuits that use logic gates. Demonstrate

3

that NAND and NOR are universal gates. Be able to convert any Boolean expression into
one that uses only NAND or only NOR operations.

2. Simplify or rewrite Boolean expressions using DeMorgan’s law and other algebraic
properties.

3. For an implication, be able to write its negation, converse, inverse and contrapositive.
Recognize that the contrapositive is equivalent to the original.

4. Given a logical argument in propositional logic (in either logic symbols or English),
determine whether the argument is valid or invalid.

5. Design combinational circuits that may have several inputs and several outputs. Write a
Boolean function as a sum of minterms. Simplify Boolean functions using a Karnaugh
map or the Quine-McCluskey technique.

6. Given a singly or multiply quantified statement, be able to convert between English and
logic symbols.

7. Determine whether a quantified statement is true or false, and be able to argue which is
the case, including finding counterexamples. Be able to negate propositional and
quantified statements.

Proof Methods and Analysis of Algorithms

8. Exhibit familiarity with the technique of direct proof, for example showing some given
elementary definition or property is satisfied. Apply other proof techniques such as
proof by contradiction and proof by contraposition.

9. Prove assertions using the principle of mathematical induction, and be able to apply this
technique specifically to verify statements about summation formulas, inequalities,
divisibility, proving the correctness of a loop, and some miscellaneous cases to the
extent it is clear the student is doing more than just memorizing isolated techniques, for
the purpose of being able to apply mathematical induction in an unfamiliar yet still
simple context.

10. Understand floor and ceiling functions. Use the definition of floor and ceiling to convert
between a floor or ceiling expression and an inequality.

11. Evaluate multiple (nested) sigma notation. Given a nested loop, calculate the number of
operations performed using Bernoulli formulas.

12. State and apply the definition of big-O notation. Also be able to recognize and show
that f(n) is not O(g(n)) in some cases. Discuss why a given algorithm may have a
logarithmic order of complexity such as O(n log n). Identify what specific effect that
changing the input size will have on the performance of the algorithm.

Sets

13. Determine the union, intersection, complement and Cartesian product of given sets.
Verify an alleged property of sets, including subsets.

14. Use Venn diagrams or Karnaugh maps to determine the number of elements in a set or
subset. Apply the principle of inclusion and exclusion.

15. Perform operations on sets of strings, including concatenation and Kleene star.
16. Recognize that set theory and propositional logic are Boolean algebras. Apply

DeMorgan’s law and other properties of Boolean algebras.
17. Use bit vectors and bitwise logical and shift operators to implement set/logical

operations. Use bitwise operators in a useful application such as steganography.

Counting, Probability and Generating Functions

18. Given a situation describing a permutation or combination, be able to distinguish which
is the case. Be able to solve permutation and combination problems, such as: the

4

fundamental counting principle, factorials, distinguishable permutations,
indistinguishable subsets, balls in urns, breaking a problem into cases. Understand and
apply the recursive nature of Pascal’s triangle and Stirling numbers. Define probability
as a fraction, and compute probabilities based on permutation or combination situations.

19. Use generating functions to solve combination problems.

Recursion and Recurrence Relations

20. Evaluate recursive formulas, and write recursive definitions. For a given set of numbers
or strings defined recursively, use induction to show that some property is satisfied.
Analyze an algorithm by writing a recursive formula (recurrence relation).

21. Solve recurrence relations using the method of undermined coefficients. Solve non-
homogeneous recurrence relations.

22. Show that a given explicit formula is equivalent to its corresponding recurrence relation.

Relations and Functions

23. Depict a relation as an adjacency matrix. Given a relation, determine if it is: reflexive,
symmetric, antisymmetric, transitive – and be able to appeal to the definitions to explain
why this is the case. Conversely, give an example of a relation that satisfies these types
of criteria. Determine if a relation is a partial order or equivalence relation. For an
equivalence relation, identify the equivalence classes. Explain equivalence relations in
terms of partitions of a set.

24. Determine if a relation is a function. Determine the domain, co-domain and range of a
function. Determine if a function is one-to-one and/or onto.

25. Design and analyze simple finite automata.
26. Show whether an infinite set is countable or uncountable.
27. Design applications of functions such as cryptography and error-correcting codes.

Graphs

28. Draw a graph that has a given degree sequence, or explain why such a graph does not

exist.
29. Determine if two graphs are isomorphic. Determine if a graph is bipartite.
30. Identify paths in a graph. Find Euler and Hamiltonian cycles in a graph.
31. Show how a graph can be represented as an adjacency matrix. Explain the significance

of the values in the matrix, particularly values other than 0 or 1.
32. Discuss applications of graph theory at a high level, explaining why it is helpful to

conceptualize certain entities in terms of nodes and edges. For example: as a data
structure, use in compiler design to detect loops, networking, finite automata, etc.

33. Construct a Huffman code given frequency data on what is to be encoded. Also be able
to encode and decode the data. Calculate the length of a message that is encoded this
way. Give an example of an ambiguous code.

34. Perform preorder, inorder and postorder traversals of a binary tree. Be able to
represent a mathematical expression as a tree and write prefix, infix and postfix
notation. Evaluate prefix and postfix expressions.

35. Perform Dijkstra’s shortest path algorithm on a weighted graph.
36. Create spanning trees using depth-first search and breadth-first search. Apply Kruskal’s

or Prim’s algorithm to find a minimal spanning tree. Distinguish between the minimum
spanning tree problem and the traveling salesman problem.

5

***Tentative course schedule
Week Days Book sections Topics
1 – 23 24 – 26 2.1 – 2.3 Logic, statements, operators, truth tables, DeMorgan’s law,

tautology, contradiction, implication, alternate forms, negating,
necessary & sufficient conditions; arguments

2 29 30 31 – 2 2.4 Liar puzzle; Logic gates, boolean functions, NAND & NOR
universal gates
Digital design procedure, don’t cares, Karnaugh maps

3 – 6 7 – 9 3.1 – 3.3 Quine-McCluskey; begin quantified statements
Quantified statements, predicates, negating, translating/English
Two quantifiers, practice

4 12 13 14 – 16 4.1, 4.3,
4.5, 4.6,
5.1

Start proof unit: direct proof, odd/even, rational, divides
Floor, ceiling; indirect proof (contradiction/contraposition)
Series, Bernoulli formulas, counting loop iterations
Test #1 on Friday

5 19 20 21 – 23 5.2, 5.3
5.5

Induction for summations, linear combinations (coin/stamp),
divisibility, inequalities, loop correctness

6 26 27 28 – 30 6.1, 6.2 Start unit on sets: defining a set, operations, empty set,
sets of strings
Boolean algebras; bit vectors and bitwise operations

7 3 4 5 – 7 9.1 – 9.3,
9.5, 9.6

Counting unit: multiplication rule, distinguishable permutations
Inclusion/exclusion, breaking into cases, permutations with
restrictions; combinations
Card examples, indistinguishable subsets, ball-in-urn

8 – – 12 – 14 9.7, 9.8 Counting passwords, expected value
Pascal’s triangle, Stirling numbers
Test #2 on Friday

9 17 18 19 – 21 7.1, 12.1,
7.4

Generating functions
Function terminology, formal definition, examples in CS
Finite versus infinite, countable versus uncountable

10 24 25 26 – 28 12.2, 7.2 Formal language, finite automata
One-to-one, onto

11 31 1 2 – 4 5.6 – 5.8 Start unit on recursion and recurrence relations: recursive
functions
Basic iteration method to solve recurrences
Homogeneous 2nd order; Prove explicit = recursive

12 7 8 9 – 11 Inhomogeneous recurrence relations
Test #3 on Wednesday

13 14 15 16 – 18 8.1 – 8.3,
8.5,
10.1, 10.3

Relations unit: reflexive, symmetric transitive, other properties
Start graphs unit: definition, applications, adjacency matrix,
degree sequence

14 21 22 – – – 10.4 Bipartite, isomorphism
15 28 29 30 – 2 10.2,

10.5 – 10.6
Trees, Huffman code, binary search tree
Breadth first search, depth first search, expression as tree
Tree traversals, weighted graphs

16 5 6 – – – Directed graphs
Final Exam 8:30 Monday, December 12.

6

Guiding principles for students in Computer Science classes
1. We are here to learn and explore.

a. Seek discussions with the instructor and classmates about the material to
reinforce your understanding, practice communicating ideas.

b. Have fun. Live in the moment (i.e. don’t dwell too much on the difficulties of
yesterday or tomorrow). Enjoy the journey and intellectual feast. Be
enthusiastic about what you are doing.

2. You can be successful in this class. Every day is an opportunity for an epiphany. Don’t
let mistakes or setbacks hold you back. After some effort, things can suddenly click in
your mind.

3. Learn by doing, not just passively reading, listening or watching.
Each study period needs to have a clear goal.
Pay attention to the big picture and the facts that you are collecting.

4. Be organized. Take notes on what you read. Review earlier material as needed. Create
a cumulative study outline every few weeks. Maintain a portfolio of your work.

5. Be patient when solving a homework or lab problem.
a. There is no need to rush.

Don’t worry if your first attempt at a solution is wrong.
Read all instructions and be methodical.
Take time to gather your thoughts.
Deliberately write out your thought process and plan of attack.

b. A computer program or other homework assignment may take up to several
hours to complete. In programs you need to comment your code as you go,
because you will quickly forget what looks obvious right now! Realize that you
don’t need to finish everything in one sitting.

c. Break up large problems into small, more manageable pieces.
d. Don’t get bogged down with too many mechanical details. Computing is all about

removing tedium from routine tasks.
6. Be curious, and always ask questions.

a. Find a topic or application that you are enthusiastic about.
b. Consider alternative solutions to a problem.
c. When finishing a problem, ask yourself if this problem or its solution lends itself

to other problems.
7. Computer science is about logic, structured thinking, information, communication and

problem solving. Thus, it has connections to many other fields in the sciences,
humanities and social sciences. You will find the analytical techniques useful in your
career.

