
CS 346 – Lab 2 – “C” World

Today we’ll take an excursion into the world of the C programming language.

Advantages to learning C:
1. C is an older relative of Java. Java was developed based on C. If you know how to

program in Java, then picking up C will not be difficult. You should become multilingual in
computer languages, and C is a fairly easy stepping stone for you. Knowledge of C will
give you additional insight into how the Java language works.

2. The C language was created to facilitate the implementation of the Unix operating system,
which itself was the precursor to Linux. Thus, if we are going to use the Linux operating
system, it makes sense to know something about the language it is written in.

3. For decades, much compiler research has been done for the C language. Therefore, C
programs are highly efficient.

4. C is commonly used in research and development, for example by the National Security
Agency.

At first glance, a C program looks like Java and vice versa. It would not be worth you time to
study how to compose such things as while loops or switch statements in C, because these are
the same as in Java. It turns out that there are only a few significant differences that you
should be aware of, and the focus of today’s lab is to explore these differences. One difference
I should mention right away (although we probably won’t need it for today’s lab) is that in C,
local variables must be declared at the top of a function, rather than in the middle when you
suddenly need to declare a new variable.

Log into the cs.furman.edu server as before. Create a new directory called lab02 and copy the
files from my ~chealy/www/cs346/lab02 directory.

Performing Output

Just as you could include the Scanner class to handle I/O in Java, the corresponding header file
responsible for I/O in C is called stdio.h. It’s called “standard I/O” as opposed to file I/O,
which we will not discuss today. The built-in file stdio.h contains predefined functions for I/O
as well as some predefined identifiers. For example, “stdin” refers to standard input (the
keyboard), and “stdout” refers to standard output (the screen). But one nice thing is that we
only occasionally need to refer to stdin and stdout explicitly.

Simple interactive I/O in C is accomplished by 2 functions: printf() and scanf(). The letter ‘f’
in these names means the I/O may be formatted. The C printf() function works like the Java
method System.out.printf() that you may already have experience with.

The printf() function takes as many parameters as you want. The first parameter is always a
string, called the format string. If all you are doing is printing a string constant, then this will
be the only parameter to printf(). However, if you want to print a combination of strings,
integers, characters and/or floating-point numbers, you need to insert “place holders” inside
the format string, and then add these parameters to the end of the printf() call.

Look at the program hello.c. Compile this program using the gcc command. (This stands for
the GNU C Compiler.) The command you would type is gcc hello.c –o hello. The –o
option says that the executable file should be called hello. It is customary for executable files
not to have an extension in their names. After compiling, run the program by typing ./hello
(and hit enter).

If you look at the source code of hello.c, you’ll notice that this program contains 4 printf()
calls. The last three actually have the same effect. In the 2nd printf call, the number is part of
the string. But in the 3rd call, we have placed a special “place holder” %d to indicate that we
are going to put an integer in that place. And the second parameter is the value of this integer
to be printed. The last printf() call shows that we can use a variable in place of a constant to
do the same thing.

The technical term for “place holder” is format specifier, and it begins with a percent sign, ends
with a formatting character code (d for decimal integer, o for octal integer, x for hexadecimal
integer, c for character, s for string, f for float, and lf for double). In between the percent sign
and the formatting character code you may put an integer value to specify how to format this
value.

For example, see what happens if you change %d to %6d. (No, it does not mean sixpence!)
This means we print the number with a field width of 6 characters, right justified. If you want
to be left justified, put a minus sign in front of the number, as in %–6d. Don’t you ‘C’ how
easy it is to format output ?

Now, add a fifth printf() call that will use %f instead of %d, and make the second parameter of
the printf() call 346.0 instead of 346. We literally want to print the number 346.0. To format
floating-point numbers, you can specify both a field width and/or a precision. Experiment with
%10.3f instead of just %f. Experiment with other numbers as well. Do you understand the
role of each number? √

Input

Next, let’s examine the file time.c. This small program performs both input and output. The
input is handled with the scanf() function. We use the same formatting character codes in
scanf() as we do for printf. The first parameter to scanf() is the format string, and the
remaining parameters are the variables you are reading into. CAUTION – Notice that in each
case, the variables are always preceded by a ‘&’ character. This is because these parameters
are technically addresses of variables, rather than the variables themselves. If you forget to
put the ‘&’ character, you will get a core dump when you try to run the program.

Compile and run the program time.c. (If you call your executable ‘time’, then you’ll need to
type ./time so you don’t inadvertently run the time system call.) Notice the formatting of the
minute is %02d. The ‘2’ means that we should prepare for a 2-digit number, and the leading
‘0’ means to pad the front of the number with zeros. Thus, it is not necessary for the
programmer to hard-code a check to see if the minute number is less than 10.

Uh-oh! There is a mistake in the program. It
reads in 2 integers and then a character, but the
character it’s reading is actually the newline
character you typed right after you gave the
second integer. Change the 3rd scanf() call so
that you throw away the newline character and
properly obtain the am/pm character.

Modify this program so that it also asks the user
to enter the number of seconds (just like the
minutes), and then prints out the time in
hh:mm:ss format as well. √

It’s good to know how to use scanf, but in the long run it is better to read input line by line. In
C, the built-in function to read a line of text is called fgets(). Read the man page for fgets to
learn its format. How would you call fgets if you wanted to read a line of text from standard
input (stdin), into a character array called line that has a length of 80 characters?

__

Incidentally, there is a simplified version of fgets() called gets() that specifically works only for
reading from stdin.

Functions

The statements in a C program are organized into functions much like Java. One feature that’s
especially convenient about C functions is the ability for it to change multiple values for you –
as if you had the ability for the function to return more than one value without having to
declare global variables.

The secret is to use “pointers”. The purpose of a pointer is to hold the address of another
variable. If a function is given a pointer, then it has the power to change the variable. For
example, consider the function call: swap(x, y). We want the swap function to exchange the
values contained in variables x and y. The only way to do it is for us to pass pointers to x and
y – or else the function really would have no effect. So instead, we should say swap(&x, &y).
In the function call, it is necessary to pass the address of x and y, because the value of a
pointer is always the address of some variable.

Take a look at the file swap.c. In the header of the swap() function you see the formal
parameter list to be: (int *x, int *y). This states that both x and y here are “pointers to int”.
If x is a pointer to int, then inside the function we use the * operator to obtain the actual value
of what is being pointed to.

Modify this swap program so that the 4 statements (2 printf and 2 scanf) that get the 2 input
values are modularized into a special input() function. This function, like swap, will have 2
parameters that are both pointers to int. The call to the input function will be much like the
call to the swap function. √

Structures

Perhaps the most conspicuous difference between C and Java is that there is no object-
oriented programming in C. C was developed in 1972, years before OO was invented. The
C++ language was released in 1986 and supported OO as well as the traditional procedural
programming paradigm. And Java, announced in 1993, is fully OO.

In C you cannot declare a class, so instead we use a struct – which stands for structure
(which some people also call a “record”). A struct in C is like a class in Java or C++, but there
are only data members, no constructors or member functions of any kind. Yes, you could
write functions that manipulate structs, but they would act like “static” functions in Java. Also,

we don’t have the encapsulation that you see in OO – everything is public: you can’t declare
anything to specifically have public, protected or private access.

Examine carefully the program struct.c. At the beginning of the program we declare a struct
that represents a new data structure to model information about a student. The program’s
main() function delegates the work to 3 functions: get_input(), compute_averages(), and
output(). I have written the first and last of these, and you are to write the
compute_averages() function.

Compile and run the program. I have provided an example input file called struct.in. Use the
redirection operator < so you can run the “struct” program on this input. You will notice that
the students’ averages need to be calculated. Feel free to experiment further by adding more
names and scores to the input file.

Once you have implemented the compute_averages() function, modify the format string in the
output() function so that the names, scores and the average are in neat columns. Also, you
should change the way the average is printed so that it only prints to 1 decimal place instead
of 7 by default. √

By the way, this program struct.c makes use of two interesting built-in functions. In your own
words, describe what they do. In particular, what is the equivalent in Java?

atoi ___

 __

strtok ___

 __

Revisiting the Range

Now that you have a taste of C, let’s write a small program from scratch. Refer to the
Range.java program you worked on in the previous lab. Write an equivalent C program.

Hints: To compare two strings in C, you need to include <string.h> at the top of your source
file, and then use the strcmp() function. This function takes 2 strings, and returns an int
value. The effect is similar to comparators that you may have worked on with Java: the
return value of 0 means the two strings are the same. A positive (negative) return value
means the first string would appear later (earlier) in the dictionary.

How to use command line arguments… You already so how to do these in Java, and the
concept is similar in C. To make use of command line arguments, we declare our main()
function as follows:

int main(int argc, char *argv[])

The first parameter is the number of command line arguments, and the second parameter is
an array of strings (technically, an array of pointers to char – as there is no string type in C).
However, you should note that, unlike Java, in C the [0] (first) command-line argument is the
name of the executable program itself. The input proper begins at [1]. √

A Mystery

Before we leave today, I want to show you a fun surprise. Take a look at the program
mystery.c. What do you think this program does? The programming style definitely leaves
much to be desired. It is one of the most infamously obfuscated programs ever written. So,
let’s compile and run the program. How was this program even able to compile?

main() {
 if (you_love(C))
 honk();
}

	CS 346 – Lab 2 – “C” World
	Performing Output
	Input
	Functions
	Structures

