Tracing through a bottom-up parse table

Example #1: Let’s read parentheses.

P (()

It turns out the parse table is

	State
	(
)
	$
	P

	0
	2
	
	
	1

	1
	
	
	(
	

	2
	
	3
	
	

	3
	
	
	(–2, P)
	

Note that “$” represents the end of input.

Here is a trace of running the parse table on input ()

	State Stack
	Input string
	Next state

	0
	(()
	2

	0 2
	(()
	3

	0 2 3
	() (
	Need to backtrack. -2, P

	0
	() (P
	1

	0 1
	() P (
	We accept the input!

Notice that when we use the parse table, at each step one of four things will happen:
1. We may arrive at the happy state.

2. There is no transition, so it’s a syntax error in the input.

3. Most common case: we have a goto operation. In this case, we advance the cursor one symbol to the right, and go to the appropriate state. When we arrive at that state, don’t forget to push the state number on the stack.

4. A “reduce” operation. If you see a negative number in the parse table, this tells you how many states to pop off the stack. In a sense, this is backtracking. Also, you need to insert a nonterminal onto the input at the point of the cursor. For example if the reduce operation says (-2, P), pop 2 states off the stack, and insert P onto the input just after the cursor.

Example #2: Let’s read binary numbers of the form { 010, 0110, 01110, etc. }

S (0A0

A (1 | 1A

The parse table would be

	State
	0
	1
	$
	A

	0
	1
	
	
	

	1
	
	3
	
	2

	2
	4
	
	
	

	3
	(-1,A)
	3
	(-1,A)
	5

	4
	
	
	(
	

	5
	(-2,A)
	
	(-2,A)
	

Here is a trace of running the parse table on input 0110:

	State Stack
	Input string
	Next state

	0
	(0 1 1 0
	1

	0 1
	0 (1 1 0
	3

	0 1 3
	0 1 (1 0
	3

	0 1 3 3
	0 1 1 (0
	Need to backtrack: –1, A

	0 1 3
	0 1 1 (A 0
	5

	0 1 3 5
	0 1 1 A (0
	Need to backtrack: –2, A

	0 1
	0 1 1 A (A 0
	2

	0 1 2
	0 1 1 A A (0
	4 (which is the accept state)

It may be interesting to try an example of incorrect input to see what a syntax error looks like.
