
A postfix “language” for lab 3

We can combine the rules for a postfix expression with a rule for declaring or initializing a
variable to create a simple calculator language. This language is similar to the one in the
textbook, but a little simpler because of the use of postfix rather than infix expressions.

 prog stmt | stmt prog
 stmt id = num ; | expr ;
 expr id | num | expr expr op
 op + | - | * | /

It turns out that the bottom-up parse table is as follows. In the reduce entries, I’ve abbreviated
the names of the nonterminals to just their first letter.

State id = num ; + – * / $ prog stmt expr op
0 2 4 1 3
1 2 4 5 1 3
2 -1,E 6 -1,E -1,E -1,E -1,E -1,E -1,E
3 2 4 7 8
4 -1,E -1,E -1,E -1,E -1,E -1,E -1,E
5
6 9
7 -2,S -2,S -2,S
8 2 4 11 12 13 14 8 10
9 15
10 -3,E -3,E -3,E -3,E -3,E -3,E -3,E
11 -1,O -1,O -1,O -1,O -1,O -1,O -1,O
12 -1,O -1,O -1,O -1,O -1,O -1,O -1,O
13 -1,O -1,O -1,O -1,O -1,O -1,O -1,O
14 -1,O -1,O -1,O -1,O -1,O -1,O -1,O
15 -4,S -4,S -4,S

As you can see, states 2, 4, 7, 10-15 contain reduce actions. Plus, states 1 and 5 are accept states,
so these are reductions as well for the end of input. What semantic actions will we need to help
us create a syntax tree? We probably won’t be sure until we actually trace through some input to
see what we’d expect.

Let’s parse the input: a = 7 ; 9 a * ;

State stack Input Action Semantic action we expect

Let’s write out semantic actions here. Can you tell how to figure out which production is being
reduced? Do you think we may need some semantic actions for goto operations?

state Production being reduced Create what?
1
2
4
5
7
10
11
12
13
14
15

