Example of recursive-descent parsing

The technique is to use a function for each nonterminal (variable) in grammar. The function
will attempt to match one of the rules on the right side of the production.
Here’s a grammar for type names:

type -> simple | "*" type | "array" "[" simple "]" "of" type

simple -> "int"™ | "char™ | NUM "__" NUM

Note that NUM is a token, not a grammar variable. We assume that a multi-digit number has already
been scanned and its value is stored with NUM token. So NUM doesn't need to be broken down further
(i.e. into its separate digits - because digits themselves are not tokens).

Below is the pseudo-code for a recursive descent parser of above grammar. In a real
compiler, we would also need to create the parse tree or perform some other action as we
figure out which grammar rule is being applied. Note: In the first case where the right-hand
side begins with a nonterminal called simple, we look at what a simple type can start with.

void type() // Handle productions of type
{

it (token is "int" or "char™ or a number) // type -> simple
simple(Q);
else if (token is "*") // type -> "*" type
{
match('*");
type();

else if (token is "array') // type -> "array', etc.
{
match("'array"");
match('[') ;
simple(Q);
match("']');
match("'of'");
type(Q;
}
else // Otherwise, syntax error!
error();

void simple() // Handle productions of simple
if (token is "int") // simple -> "int"
match('int');
else if (token is "char') // simple -> "‘char”
match('char'™);
else if (token is a NUM) // simple -> NUM "__." NUM

match(NUM) ;
match(.."™);
match(NUM) ;
}
else // syntax error
error();

void match(token t) // Match means see if the token
// is what we expect it to be.
if (token matches t) // And then we go on to the next token.
token = find_next_token();
else
error();

