CS 461 – Homework:  “Creating Writing with Markov Chains” – due 4:00pm Friday, October 28, 2011
The purpose of this assignment is to have a little fun with grammars – to write a computer program that can generate its own prose.  We saw how this could be done with the examples at the beginning of chapter 2, such as “Old Mother Hubbard.”  However, the general problem of generating lots of spontaneous text is more involved.  How would you write a grammar for an entire story?  It might start something like this:


Story ( ε | Chapter Story


Chapter ( ε | Paragraph Chapter


Paragraph ( ε | Sentence Paragraph


Sentence ( Subject Verb | Verb Subject | Subject Verb Object | Question-word Verb Subject



[ and many more rules! ]

Not only would this be very tedious to spell out all possible ways the English language can be used, we have a more fundamental problem.  To be a “convincing” story, we need something context sensitive, rather than context free.  For example, at the beginning of a story you want to introduce your characters or subject matter, and so you will spell out some details that would not be appropriate to repeat towards the end of the document.

So it seems like context-sensitive is the way to go.  But a detailed study of context-sensitive grammars belongs in a more advanced course in automata theory.  For the purpose of this assignment, we will do a very simple version of a context-sensitive grammar called a Markov Chain.  There are 2 main advantages to using this approach:  First, we won’t have to write any grammar rules when designing our computer program.  It turns out that the program will figure out the rules on its own!  Second, all we need to worry about is the next word to produce in our document.  We won’t have to worry about the overall structure of the output – we’ll just focus on what the next word in our output should be.

The basic idea of our Markov chain is that we start our story (or whatever document we’re trying to produce) with 2 words.  And thereafter, we determine the next word to print based on the previous two words.  This is much like how the Fibonacci sequence works:  1, 1, 2, 3, 5, 8, 13, 21, …  How do we know the next number?  It’s the sum of the two previous numbers.  In our program, if we generate the consecutive words “Wolfgang Amadeus …” the question becomes what the next word should be.  And it turns out there won’t be too many possibilities.  After all, not many people have this name.

I hope you can see that in order to figure out what the next word should be, we look at the previous 2 words, not just the previous word.  Can you try to guess what the next word should be following “the”?  Practically any noun or adjective could follow, so we don’t have much of a sense of anticipation.  Now, if we saw “the horse” – there aren’t too many things that horses do.  Based on these two words, the possibilities for the next word have been reduced considerably.  In general, by using the 2 most recent words, figuring out what we should use for the next word in our output should be a manageable task.

The key question is how do we know what the next word should be?  This is where the “chain” or grammar comes in.  Consider this text fragment:  “the dog ate and the dog slept”.  We can analyze the text as follows:


After “the dog” comes “ate”


After “dog ate” comes “and”


After “ate and” comes “the”


After “and the” comes “dog”


After “the dog” comes “slept”

And you can write the above observations in the form of a grammar, but we will dispense with that notation.  Notice that the first and last rules above refer to the same initial pair of words “the dog” so that we can combine those rules to say:


After “the dog” comes either “ate” or “slept”.

So from reading one sentence, we’ve been able to generate 4 context-sensitive rules about English.  What’s really convenient is that we don’t need to hard-code these rules into the program – we can have the program input some “real” text, and surmise how English works.  Thus, this will be the first part of your program.  Your program will read an input text file (which could be called input.txt) whose purpose is to teach your program a little about our English language.  This input text file may be anything, but make sure it has enough language to go on.  For example, William Henry Harrison’s inaugural speech or Tolstoy’s War and Peace or Homer’s Iliad.  As you read in your input, you will need to identify all possible consecutive pairs of words, and keep track of what words can follow that pair.  For example, in the above example input “the dog ate and the dog slept” we would have 4 pairs, and we would want to keep track of this information:


(the, dog) produces: { ate, slept }


(dog, ate) produces: { and }


(ate, and) produces: { the }


(and, the) produces: { dog }

When reading the words from the input file, your analysis should be case sensitive, so for example we can detect that we’re at the beginning of a sentence.  Also, if a punctuation symbol appears immediately after a word, such as a comma or period, you should consider that symbol as part of the word.  This will help your program to create realistic-sounding sentences later.

The second phase of your program is to generate output!  You get to choose how much output you want, for example 200 words.  The first two words of your output should be a randomly chosen pair, such that the first word is capitalized (i.e. starts a sentence).  Don’t worry if you’re unlucky and choose an initial word that’s merely a proper noun.  Once the first 2 words have been selected, you enter a loop in which the next word is determined by looking up the pair of words that you’ve just written, and selecting the next word at random.  For example, let’s say that your set of pairs includes the following:


(the, oaths) ( which(1)


(which, the) ( Constitution(3), majority(1), President(2), rich(1), character(1)


(the, Constitution) ( prescribes(1), may(1), has(2), is(1), itself.(1), from(1), not(1)


(the, President) ( is(1), to(2), possesses(1), sufficient(1)


(the, character) ( of(7), and(3)


(character, of) ( the(4), a(1), that(1)

The numbers in parentheses indicate how many times this word appeared after the pair.  For example, the endings “of(7)” and “and(3)” for the pair “the,character” indicate that the pair of consecutive words “the character” appears 10 times in the input data.  Seven of those 10 times the word “of” appears next, and the other 3 times the word “and” appears next.  When your program generates your random text output, you need to weight the possibilities accordingly.  If you have just generated the words “the character” then there should be a 70% chance that the next word is “of”.  

From a practical standpoint, this need to weight certain words means that when you are reading the input file, you need to keep track of how many times each word appears after your pairs.  Your program should be designed so that the input file is arbitrarily large – there could be many thousands of pairs, and each pair may be followed by many possible words, each of which has its own numerical weight.

When you run your program, you may notice that the process of reading the input file and generating all the possible pairs and their subsequent words takes much longer than generating the output.  We want to be able to run the program multiple times on the same input.  Therefore, to make this task manageable, there are a couple of modifications you can consider.  First, use efficient data structures for your pairs and endings.  For example, consider a hash table or dictionary to store your information, to speed up lookup and retrieval.  Another thing that might help is to write your pairs to output.  Then, you can write a program that reads this pairs file (rather than the training data again) to generate its prose.  If you simply want to run the program to generate more output, your program can simply refer to the pair information that has already been computed and stored.  Another advantage to creating this pairs file is so that the user can see all the context-sensitive rules your program is using.

Your implementation should be an attractive and well-organized program written in a high-level language such as Java.  The program should be divided into multiple source files (classes).  You are free to design your algorithm and data structures as you wish, but as a guide, here is a concise outline of my program.  Please don’t feel you must organize your program this way.

Markov.java – contains main function

Chain.java – contains data structure based on the entire input file, with these functions:


default constructor


contains(Pair p)


findPair(Pair p)


contains(Pair p, String word)


increment(Pair p, String word)


create(Pair p)


create(Pair p, String word)


calcProb()


randomPair()


toString()

Pair.java – defines a “pair” of words in the context of the Markov chain.  Methods are:


initial-value constructor


createEnding(String s)


incrementEnding(String s)


getWord1()


getWord2()


equals(Pair p)


containsEnding(String s)


calcProb()


nextWord()


toString()

Ending.java – What I call an “ending” is a word that may follow a pair.  Methods include:


initial-value constructor


get/set functions on the attributes, as appropriate


incrementCount()


toString()
