
OBJECTIVES FOR CS MAJORS

CS AS A DISCIPLINE

REQUIRED COURSES

ELECTIVE OPTIONS

SUPPORTING COURSES

PREREQUISITES

COURSE SPECIFICATIONS

• OUTLINES

• REFERENCES

IMPLEMENTATION OF THE

CURRICULUM

FUTURE WORK OF CsS

An Undergraduate Program
in Computer Science--
Preliminary Recommendations
A Report from the

A C M Curriculum Committee on Computer Science

The Curriculum Commit tee on Computer Science
(C3S) of the Association for Computing Machinery has
been considering curriculum problems for approximately
three years. During the early par t of this period, a number
of informal sessions were held with computer people at
various national meetings. In the latter par t of this three-
year period, the Commit tee has been formally organized
and has made a definite effort to arrive at concrete sugges-
tions for a curriculum.

This report is a result of these lat ter efforts. During the
summer of 1964, a one-week session was held by the Com-
mittee at The Homestead in Poughkeepsie, New York, as
guests of the International Business Machines Corpora-
tion. While a series of earlier sessions had been held on
curriculum definition, our first formal writing was done at
the Poughkeepsie meeting. Since tha t time, several com-
plete meetings or partial meetings have been held to com-
plete the recommendations.

The Commit tee does not consider these suggestions to
be final, but only as a point of departure. We hope tha t
these recommendations will st imulate comment and sug-
gestions for their further improvement.

The following curriculum has already had the benefit of

critical review by a large number of computer scientists.
The number of these people is far too large to permit a
listing.

Our formal working committee consisted of:

S. D. Conte, Purdue University
John W. Hamblen,* Southern Illinois University
Thomas A. Keenan, University of Rochester
William B. Kehl, University of Pittsburgh
Silvio O. Navarro,t University of Kentucky
Werner C. Rheinboldt, University of Maryland
Earl J. Schweppe, University of Maryland
David M. Young, Jr., University of Texas
William F. Atchison, Georgia Institute of Technology

(Chairman)

Special mention should be made of Dr. Elliott I .
Organick (University of Houston), Dr. C. C. Gotlieb (Uni-
versi ty of Toronto), Dr. Thomas E. Hull (University of
Toronto), and Dr. George E. Forsythe (Stanford Uni-
versity) for their help. Each of them attended par t of our
formal sessions, the lat ter having been an actual member
of our Committee. Our Commit tee is also indebted to
George Heller for his assistance and encouragement while
he was Chairman of the Educat ion Commit tee and our
group was a subcommittee of his Education Committee.

I N T R O D U C T I O N

The advent of the computing machine and related autom-
a ta has brought about arapid growth in new areas of re-
search and the need for considerable modification in the
educational offerings of our colleges and universities. Al-
though much change has been accomplished within exist-
ing programs, such as mathematics and electrical
engineering, there is a sizeable area of work which does not
naturally fit into any existing field. Thus, it is now gen-
erally recognized tha t this area, most often called Com-
puter Science [1], 1 has become a distinct field of study. This
development is reported by the Commit tee on Uses of
Computers of the National Academy of Sciences [2], by
several individual authors [3, 4, 5, 6, 8], and in a report of

the Commit tee on the Undergraduate Program in Mathe-
matics (CUPM) [7] which states:

Out of the solution of such problems as these has emerged a field
of study called Computer Science, embracing such topics as nu-
merical analysis, theory of programming, theory of automata,
switching theory, etc.

Reprints are available at nominal costs from ACM Headquar-
ters (211 E. 43 St., New York, N. Y. 10017).

* Present affiliation: Southern Regional Education Board,
Atlanta, Georgia.

t Dr. Navarro, of the University of Kentucky, has just recently
joined the Committee.

1 These numbers refer to a list of general references which ap-
pear immediately before the section on Computer Science Courses.

V o l u m e 8 / Number 9 / September, 1965 Communications of t h e ACM 543

There are many schools already giving undergraduate
degrees in Computer Science or who are about to give such
degrees. I t is the hope of the Curriculum Committee on
Computer Science of ACM that our work and the recom-
mendations included in this report will give some guidance
to such schools and will serve as a coordinating force for
the various diverse efforts.

We recognize that many needs are to be met in
computer-related education; instruction in the use of com-
puters as a tool is increasingly sought by students in the
natural sciences, literature, medicine, management, etc.
However, the background of the students, the language
appropriate to the subject, the pertinent exercises and ex-
amples, all differ, depending on the students' primary field.
The Committee has chosen to direct its attention first to
the student whose primary interest is in computer science.
The Committee solicits comment and criticism of the
present report with the view of both strengthening the
current recommendations and illuminating the relation
between computer science and other fields of study.

The report of CUPM entitled "Recommendations on the
Undergraduate Mathematics Program for Work in Com-
puting" is very well done. Members of C3S, some of whom
had consulted with CUPM, were greatly pleased with the
perception shown in this document and with the fact that
the plan suggested by CUPM to some degree paralleled
their own thinking. Tha t report, however, was for the
mathematics major and we feel that additional work is
needed for the computer science major, especially in view
of the fact that so many schools are moving toward such a
major [9].

O b j e c t i v e s

The curriculum is intended to be flexible enough that
students receiving the baccalaureate can follow one of
several paths. Among these are:

1. Undertake graduate work in computer science. I t is
hoped that many of the best students will follow this
path since the future leadership of the computer science
eommunity depends on it.

2. Contribute in the rapidly growing profession of
systems programming.

3. Work on applications programming. I t is felt that an
undergraduate program would provide a stronger back-
ground in numerical analysis, logic, statistics, and formM
languages than that available to many of those now
engaged in applications programming.

4. Undertake graduate work in a field other than com-
puter science. I t is expected that students following this
path would help introduce the methodology and discipline
of computer science into other fields.

In order that graduates of the program be prepared to
follow the alternative plans listed above, the curriculum
we are recommending contains a small group of required
courses that every computer science major should master
and a selection of courses to be elected (with guidance) in
the junior aud senior years. All the courses to be de-

544 Communications of the ACM

scribed in this report are based on courses in existence,
or in some instances on material known to be essential
to a well trained computer scientist but not yet fully
developed into complete courses. This latter material is
to be the object of further work of the Committee. An
immediate objective is to organize known material into a
rational academic curriculum.

C o m p u t e r S c i e n c e as a D i s c i p l i n e

There are widespread misconceptions of the purpose of
computer science despite the general acknowledgement
tha t it is a distinctive subject. Computer science is not
simply concerned with the design of computing devices--
nor is it just the art of numerical calculation, as important
as these topics are. Computer science encompasses many
specialized areas, M1 developing with extreme rapidity. I t
is natural that one should associate some small part, to
which he has been exposed, with the subject as a whole.
Even among those specializing in computer science, few
(if any) are able to keep pace with the flood of innovation
throughout the field.

Computer science is concerned with information in much
the same sense that physics is concerned with energy; it
is devoted to the representation, storage, manipulation and
presentation of information in an enviromnent permitting
automatic information systems. As physics uses energy
transforming devices, computer science uses information
transforming devices. Some forms of information have been
more thorougMy studied and are bet ter understood than
others; nevertheless, all forms of information--numeric,
alphabetic, pictorial, verbal, tactile, olefactory, results of
experimental measurement, e tc . - -are of interest in com-
purer science.

Mathematics, too, is concerned with information and its
structure and this tends to confuse those not well versed
in both mathematics and computer science. The mathe-
matician is interested in discovering the syntactic relation
between elements based on a set of axioms which may have
no physical regality. The computer scientist is interested in
discovering the pragmatic means by which information
can be transformed to model and analyze the information
transformations in the real world. The pragmatic aspect
of this interest leads to inquiry into effective ways to repre-
sent information, effective Mgorithms to transform in-
formation, effective languages with which to express
algorithms, effective means to monitor the process and to
display the transformed ixfformation, and effective ways to
accomplish these at reasonable cost.

The fact tha t computer science is now a distinct aca-
demie discipline is demonstrated by the rapidly increasing
number of colleges and universities [9] which have estab-
lished departments of computer science. At the time of
this writing, in the United States, doctorates can be sought
at more than 15 universities, master's degrees at more than
30, baccalaureates in at least 17 colleges, and a sizeable
number of other colleges and universities are presently

Volume 8 / Number 9 / September, 1965

planning or considering departments of computer science
[10].

Description of the]Report

Catalog-type course descriptions together with pre-
requisites are given in the section entitled "Computer
Science Courses." In some cases we have had to decide
whether a course should be listed as a computer science
course, and included in that section or be assigned to the
role of a supporting course from another discipline. This
choice has been made based on the relevancy to the entire
computer science program. Certain courses can be dis-
tinguished from similar courses in other disciplines by the
prerequisites and experience required of the student, and
the relative emphasis and approach to the topics. For ex-
ample, a course in logic obviously can be taught without
any reference to computers.

A description of the curriculum, the elective options and
the supporting courses, is given in the section entitled
"Computer Science Curricula and Supporting Courses."
In that section a distinction is made between the required
courses, the electives that are not required but are im-
portant enough to recommend strongly, and electives of a
more specialized nature.

More complete specifications of the computer science
courses are given in the subsection "Descriptions of Com-
puter Science Curriculum Courses--Outlines and Refer-
ences." Each of these descriptions is a detailed list of topics
that could be dealt with in a one-semester course. We have
not tried to say how much time should be spent on each
topic. A list of references is given with each course descrip-
tion. These references are not necessarily intended as
recommended texts for the course. Adequate texts are not
yet available for some of the courses.

I m p l e m e n t a t i o n of this Curriculum

The computer science curriculum is presented here for a
college using the semester system where each semester
"course" normally carries three hours of credit. Because of
the diversity with which college curricula are organized
in the United States, many colleges will need to interpret
this curriculum for their organization. Other colleges will,
of course, find that they are not able to offer all the courses
(especially among the electives) or, perhaps, that other
electives are better suited.to the interests of their faculty
and the needs of their students.

In applying these recommendations to any given college,
consideration should clearly be given to the possibility that
certain courses may already be available or may be made
available by modification of existing courses. Double list-
ing of courses is a technique that has sometimes been used
with apparent success.

We cannot be specific with regard to faculty organization
for this curriculum simply because of the diversity of the
American college structure. In some schools an inde-
pendent department of computer science may be appro-
priate; in others such a department of computer science

V o l u m e 8 / Number 9 / September, 1965

may not. We concur with CUPM that those responsible
for the computer science curriculum should be closely
linked to the computer scientists engaged in providing
computational facilities. Although we further agree that
most of the computer science courses described in this re-
port will not be taught within existing mathematics de-
partments, there is considerable benefit to be gained from
mutual cooperation. In any case either new departments
will need to be established, or existing mathematics (or
other) departments will need to recognize the participa-
tion of computer scientists in their faculty development
plan.

The Committee believes that several of the courses de-
scribed in these recommendations will be of value to stu-
dents whose prime interest is in another area of study.
Students in engineering or any of the sciences will find
Introduction to Algorithmic Processes (Course Number 1)
a valuable introduction to the use of computers which pro-
vides an insight into computer science. Students interested
in following the CUPM recommendations while majoring
in mathematics will find ample material in our recom-
mendations. Engineering students may find Courses 6 and
10 particularly valuable. Numerical Calculus and Nu-
merical Analysis (Courses 3, 7, and 8) are of increasing
value to students of many fields.

We have not investigated the question of whether some
modification of standard courses in mathematics, physics,
etc., would be desirable from the viewpoint of a computer
science major. Some intuitively feel that this may be the
case but admit that the question needs careful considera-
tion.

Future Work of the Commit tee

The work of C3S is in its early stages. Readers of this
report are encouraged to communicate their ideas, ex-
periences, and criticisms to the CommRtee. Not only will
the present recommendations need periodic review but
many suggestions concerning further computer-oriented
curricula are sought. Study of the computer science needs
of students in the nonphysical sciences is appropriate. I t
has been suggested that the educational needs of those who
will plan and design the computing and communication
equipment of the future should be given special considera-
tion. More specific thought will be given to the education
of those wishing to prepare themselves for work in informa-
tion retrieval, management science, the life sciences, and
the behavioral sciences. Finally, the present recommenda-
tions do not deal with graduate computer science. A com-
mittee to study graduate curriculum is in the process of
formation.

General References

1. ATCItISON, W. 1~., AND HAMBILEN, J . W . S t a tus of computer
sciences curricula in colleges and universities. Comm. A C M
7 (Apr. 1964), 225-227.

2. NATIONAL ACADEMY OF SCIENCEs--NATIONAL RESEARCH
COUNCIL, COhlMITTEE ON COMPUTER USES. Computer needs
in American colleges and universities (a report). Publ. Dept.,
NAS, Washington, D. C., 1964.

Communications of tile ACM 545

3. GORN, S. The computer and information sciences: a new
basic discipline. S I A M Rev. 5 (Apr. 1963), 150-155.

4. FEIN, L. The role of the university in computers, data
processing and related fields. Comm. A C M 2 (Sept. 1959),
7-14.

5. ~KEENAN, T. Computers and education. Comm. A C M 7 (Apr.
1964), 205-209.

6. FORSYTHE, G.E. An undergraduate curriculum in numerical
analysis. Comm. A C M 7 (Apr. 1964), 214-215.

7. MATHEMATICAL ASSOCIATION OF AMERICA, COMMITTEE ON
THE UNDERGRADUATE PROGRAM IN MATHEMATICS. Recom-

mendations on the undergraduate mathematics program for
work in computing. The Committee, P. O. 1024, Berkeley,
Calif., May 1964.

8. FORSYTHE, G.E. University education in computer science.
Paper presented at the Fail Joint Comput. Conf., San
Francisco, Calif., Nov. 1964.

9. SIXTH SURVEY OF UNIVERSITY COMPUTING FACILITIES. Pre-
pared under the direction of Dr. T. A. Keenan, U. of Roch-
ester, July 1963.

10. PANEL ON COMPUTER SCIENCE CURRICULUM. Proc. ACM Nat.
Conf., Aug. 1964. Papers by E. J. Schweppe, S. D. Conte,
R. S. Varga.

C O M P U T E R S C I E N C E C O U R S E S

Table of C o u r s e s for C o m p u t e r Sc ience M a j o r s

TABLE 1. PRELIMINARY RECOMMENDATIONS OF THE CURRICULUM COMMITTEE OF ACiV~
FOR MAJORS IN COMPUTER SCIENCE

lions

Required

Highly
Recommended
Electives

Other
Electives

Basic Coursrs

Computer Science

I . INTRODUCTION TO
ALGORITHMIC
PROCESSES*

2. COMPUTER
ORGANIZATION AND
PROGRAMMING

4. INFORMATION
STRUCTURES

6. LOGIC DESIGN AND
SWITCHING THEORY

9. COMPUTER AND
PROGRAMMING
SYSTEMS

10. COMBINATORICS
AND GRAPH THEORY

Theory Courses

5. ALGORITHMIC
LANGUAGES AND
COMPILERS

13. CONSTRUCTIVE
LOGIC

14. INTRODUCTION
TO AUTOMATA
THEORY

15. FORMAL
LANGUAGES

* The specifications for the 16 Courses, indicated by boldface numerals, are

Numerical Algorithms

3. NUMERICAL
CALCULUS (or
Course 7)

7. NUMERICAL
ANALYSIS I

8. NUMERICAL
ANALYSIS II

iven in this report.

Computer Models and
Applications

11. SYSTEMS
SIMULATIONS

12. MATHEMATICAL
OPTIMIZATION
TECHNIQUES

16. HEURISTIC
PROGRAMMING

Supporting

Beginning Analysis
(12 cr.)

Linear Algebra (3)

Algebraic Structures
Statistical Methods
Differential

Equations
Advanced Calculus
Physics (6 cr.)

Analog Computers
Electronics
Probability and Sta-

tistics Theory
Linguistics
Logic
Philosophy and Phi-

losophy of Science

Cata log Descr ip t ions o f C o m p u t e r Sc i ence Courses
an d Prerequis i tes

REQUIRED COURSES :

1. Introduction to Algorithmic Processes (2-2-3) 2
Prerequisite: Concurrent registration in Beginning Analysis
Concept and properties of an algorithm, language and no-

tation for describing algorithms, analysis of computational
problems and development of algorithms for their solution,
application of a specific procedure-oriented language to
solve simple numerical and non-numerical problems using
a computer.

The first number gives the number of lectures, the second the
number of laboratory hours, and the third the number of hours of
credit.

2. Computer Organization and Programming (2-2-3)
Prerequisite: Course 1 above
Logical basis of computer structure, machine representation

of numbers and characters, flow of control, instruction
codes, arithmetic and logical operations, indexing and
indirect addressing, input-output, subroutines, linkages,
macros, interpretive, and assembly systems, pushdown
stacks, and recent advances in computer organization.
Several computer projects to illustrate basic concepts will
be incorporated.

3. Numerical Calculus (2-2-3)
Prerequisite: Course 1 above and Beginning Analysis 3
An introduction to numerical methods. Includes elementary

discussion of errors, polynomial interpolation, quadrature,
linear systems of equations, solution of nonlinear equations,
and numerical solution of ordinary differential equations.

546 Communica t ions of the ACM Volume 8 / Number 9 / September, 1965

The algorithmic approach and the efficient use of the com-
puter will be emphasized.

4,. Informat ion Structures (2-2-3)
Prerequisite: Course 2
Study of information representations and relationships be-

tween the form of representation and processing techniques.
Transformations between storage media. Referencing of
information as related to the structure of its representation
and implications for the design of the referencing language.

5. Algori thmic Languages and Compilers (3-0-3)
Prerequisite: Course 2 above and possibly Course 4
Formal description of algorithmic languages, e.g., ALGOL, and

the techniques used in their compilation. Study of syntax,
semantics, ambiguities, procedures, replication, iteration
and recursion in these languages. Syntactic decomposition
and the theory of compilers which are syntax directed or
recursively controlled.

ELECTIVE COURSES :

6.]Logic Design and Switching Theory (3-0-3) or (2-2-3)
Prerequisites: Courses 1, 2
Symbolic logic and Boolean algebra for description and

analysis of switching circuits; simplification of switching
circuits; error detecting and correcting codes; storage ele-
ments defined logically; basic sequential circuits; digital
systems design principles.

7. Numerical Analysis I (3-0-3)
Prerequisites: Course 1 above and Advanced Calculus
A thorough treatment of solutions of equations, interpolation

and approximations, numerical differentiation and inte-
gration, numerical solution of initial value problems in the
solutions of ordinary differential equations. Selected algo-
rithms will be programmed for solution on computers.

8. Numerical Analysis I I (3-0-3)
Prerequisites: Course 1 above, Advanced Calculus and Linear

Algebra
The solution of linear systems by direct and iterative methods,

matrix inversion, the evaluation of determinants, eigen-
values and eigenvectors of matrices. Application to bound-
ary value problems in ordinary differential equations.
Introduction to the numerical solution of partial differential
equations. Selected algorithms will be programmed for
solution on computers.
NOTE: While other arrangements of the material in
Courses 7 and 8 are possible, the arrangements sug-
gested here allow the two courses to be taught inde-
pendently. It may also be considered desirable to
require Numerical Calculus as a prerequisite for
these courses.

9. Computer and Programming Systems (3-0-3)
Prerequisite: Course 4 above
Input-output and storage systems, structures and transfor-

mations of data bases, assembly and executive systems.
10. Combinatories and Graph Theory (3-0-3)

Prerequisite: Course 1 and Beginning Analysis
An introduction to set theory, graph theory, and combi-

natorial analysis. Includes such topics as set algebra, order

relations, cardinality, indirected and directed graphs,
elementary combinatorics, principle of inclusion and ex-
clusion, recurrence relations, zero-one matrices, partitions,
and Polya's Theorem.

11. Systems S imulat ions (2-2-3)
Prerequisite: Course 1, possibly Course 4, and Probability and

Statistics
Computer simulation utilizing logical, numerical and Monte

Carlo modeling to represent systems. The description of
the status of systems by the use of sets of entities and the
modification of this status by events. The generation,
termination, and flow of entities possessing prescribed
attributes through storage and processing facilities. Bal-
ancing systems, sharing facilities and using priorities to
modify performance. Collection and evaluation of statistics
on passage times, flow volumes, queue lengths, manpower
and equipment utilization. Use of special simulation lan-
guages to simulate actual systems.

12. Mathemat ica l Opt imizat ion Techniques (3-0-3)
Prerequisite: Course 8
Extremal properties of multivariate functions with and

without constraints, convex sets and convex functions,
linear programming, quadratic programming, dynamic
programming.

23. Construct ive Logic (3-0-3)
Prerequisite: Course 1 and Beginning Analysis
An introduction to logic and Boolean algebra. Set algebra,

product sets, relations and functions, propositional calculus,
algorithms and quantification theory.

14. Introduct ion to Automata Theory (3-0-3)
Prerequisite: Course 13, and Algebraic Structures
A discussion of various types of automata, such as finite,

probabilistic, growing, and reproducing automata. Repre-
sentation of automata by regular expressions, state graphs,
logical nets, recursive functions, and Turing machines.

15. Formal Languages (3-0-3)
Prerequisites: Course 5 and possibly Course 13
This course is a study of certain languages and grammars

which can be specified in precise mathematical terms.
These formal languages are closely related to computer
languages and can serve as primitive models of natural
languages. Various types of formal languages are defined
and their properties derived. The ideas have been applied
in computer programs for syntactic analysis and machine
compilation.

16. Heuris t ic Programming (3-0-3)
Prerequisites: Courses 4 and 11
Distinction between heuristic and algorithmic methods.

Polya's and Hadamard's role in mathematical intuition.
Justification of the need for heuristic approach. The ob-
jectives of work in Artificial Intelligence and in Simulation
of Cognitive Behavior. Discussion of research projects
using heuristic programming techniques. Brief description
of related research areas, such as Self-Organizing Systems,
Neural Cybernetics, Automata Theory, Machine Trans-
lation of Languages, Information Retrieval, Automatic
Medical Diagnosis, Machine Composition of Music, Auto-
matic Engineering Design, etc.

C O M P U T E R S C I E N C E C U R R I C U L A A N D S U P P O R T I N G C O U R S E S

R e q u i r e m e n t s a n d O p t i o n s for C o m p u t e r S c i e n c e
M a j o r s

I t is no t in tended by the Commit tee t ha t its recom-
menda t ions be iron-clad, bu t ins tead t ha t they form a
realistic basis upon which a sound program in computer

science can be s t ructured. Cer ta in deviat ions will be neces-
sary, depending upon the par t icular ins t i tu t ion , its facul ty-
and its objectives. Since the Commi t tee ' s recommenda ,
t ions are presented in terms of a semester basis, cer ta in
changes will be necessary by an ins t i tu t ion which operates
unde r a quar te r system.

Volume 8 / Number 9 / September, 1965 Communica t ions of the ACM 547

The courses displayed in Table 1 summarize the Com-
mi t tee ' s recommendat ions . The courses have been classi-
fied horizontal ly as Compute r Science and Suppor t ing and
ver t ical ly as being Required, Elect ives and Highly Recom-
mended Electives.

W i t h i n computer science we have identified four topic
areas 3 under which we have chosen to group these courses.

This a r rangement is pr imar i ly to clarify the con t inu i ty
wi th in the course program and to suggest a possible struc-
ture for organizing gradua te curricula in compute r science
to extend this program. The higher numbered courses bui ld
cumula t ive ly on the knowledge from the earlier courses in
each topic. Bu t these areas are obviously no t m u t u a l l y ex-
clusive.

The combined tota l of the required courses and the
highly recommended electives a m o u n t to approximate ly
54 semester credit hours. Several of the suppor t ing courses
will usual ly satisfy other general requi rements which means
t h a t a s tuden t will have considerable flexibility in com-
plet ing a program. A few of the m a n y possible opt ions are
the following:

(a) Numerical Analys is Option: One semester of ad-
vanced calculus and Numer ica l AnMysis I and I I .

(b) Statistics Option: Two courses in s tat is t ical theory
and two in stat is t ical methods.

(c) Electronics: A n addi t ional two to three courses in
electronics.

(d) Physical Sciences: Two courses in each of two physi-
cal sciences.

(e) Mathematical Linguistics: Courses as they are avail-
able.

Descriptions of Computer Science Curr iculum
Courses - -Out l ines and References

1. Introduction to Algori thmic Processes (2-2-3)
This is the basic course for students expecting to major in

computer science. It is intended to:
CA) Introduce the student to the intuitive notion of an algo-

rithm. Emphasize the power of algorithmic descriptions of prob-
lem solutions and the requirements for well-formed representations
of algorithms.

(B) Introduce a procedure-oriented language and provide the
computer experience which will make the use of a computer
possible in later courses.

(C) Survey a variety of significant uses of computers and other
automata.

Content: The lectures are composed of three parts which
should not be treated as completely independent. These are:

Ca) Characteristics of a procedure-oriented language. This
teaches how to state a well defined problem in a form such that it
can be compiled and executed. Attention should be given to
motivating the features included in the language as well as the
restrictions and conventions encountered.

(b) Description of a computer. Here the student should obtain
an understanding of the general structure of computers, of the
representation of information (both numeric and non-numeric),
and of a representation of machine instructions. Only enough of
an order code is taught to enable the student to write simple
codes for the available machine to aid his understanding of the
relationship between the computer and the algorithmic language.

a See Keenan, T.A. Computers and education. Comm. ACM 8
(Apr. 1964), 206.

(e) Introduction to algorithms. The intuitive notion of an
algorithm should be introduced with special care; definiteness,
generality, conclusiveness, and the limitations of their finite
nature being emphasized. The representation of algorithms in
narrative form (including mathematical symbolism), as flow-
charts, and as computer programs should be discussed. Simple
algorithms are developed for several problems such as elementary
numerical calculations, sorting, simulation of a random process,
and symbol manipulation. Iterative and recursive algorithms are
to be explained and compared. The definitions and use of functions,
subroutines, and iterative procedures are dealt with throughout.

References :
PERLIS, A.J . Programming for digital computers. Comm. ACM

7 (Apr. 1964), 210.
AlmEN, B.W. On introducing digital computing. Comm. ACM

7 (Apr. 1964), 212.
MATHEMATICAL ASSOCIATION OF AMERICA, COMMITTEE ON THE

UNDERGRADUATE PROGRAM IN MATHEMATICS. Recommenda-
tions on the undergraduate mathematics program for work in
computing. The Committee, P.O. 1024, Berkeley, Calif., May,
1964.

ARDEN, B. W. An Introduction to Digital Computing. Addison-
Wesley, Reading, Mass., 1962.

2. Computer Organiza t ion and Progranln l ing (2-2-3)
This course provides the student with a thorough description

of the logical organization of computers. The course content will
depend to a considerable extent on the available computing equip-
ment. Nevertheless, it is important that the course as a whole go
beyond any specific computer. Hardware features which are not
available should be simulated whenever possible. It is vital that
this course be frequently updated to reflect changing ideas of
computer organization. By the use of appropriate examples, the
student is first convinced of the limitations of procedure-oriented
languages and the need for a more intimate knowledge of the
machine. The course treats the hardware functional units such as
memory, arithmetic units, and control registers, the individual
machine instructions, and use of these elements in combination
to produce effective programs.

Content:
(a) Examples showing the limitations of procedure-oriented

languages.
(b) Representation of the abstract notion of numbers and

characters in several ways including representations used in
digital machines.

(c) Functional basis of various computer structures including
memory devices, word structure and addressing, arithmetic units,
and input-output equipment.

(d) Control units and instruction sequencing.
(e) Machine instructions, their representation in machine

language and in symbolic form, and their use together with de-
tailed flowcharts to solve simple problems.

(f) Use of index registers, base registers, and indirect address-
ing.

(g) Simple input-output instructions.
(h) Open and closed subroutines and their incorporation

through linkages into complete programs.
(i) Interpretive routines.
(j) Assembly programs and macros.
(k) Advanced input-output instructions and editing procedures.
References :

SHERMAN, P. M. Programming and Coding Digital Computers.
John Wiley and Sons, New York, 1962.

WEGNER, P. Introduction to Symbolic Programming. Griffin, 1964.
WEGNER, P. (ED.) Introduction to System Programming. Aca-

demic Press, New York, 1964.
GI~ABBE, E. M., RAMO, S., AND WOOLDmn~E, D. E. (EDs.) Hand-

book of Automation, Computation, and Control, Volume 2:
Computers and Data Processing. Wiley, New York, 1959.

548 ~Y Communica t ions of the ACM Volume 8 / Number 9 / September, 1965

3. N u m e r i c a l C a l c u l u s (2-2-3)
The course is intended to provide the student with a first

introduction to numerical analysis, complementing his studies of
beginning analysis and continuing and deepening his under-
standing of the analysis of computational problems, the develop-
ment of algorithms for their solutions, and the efficient utilization
of the computer itself. In the Laboratory portion, the student
completes a substantial number of computational projects using
a suitable procedure-oriented language. Emphasis is on numerical
error and the understanding of the sensitivity of problems to
errors, and of pitfalls in numerical analysis.

Content:
(a) Basic Concepts of Numerical Error. Significant digit

arithmetic rounding procedures. Classification of error, evalu-
ations of expressions and functions.

(b) Interpolation and Quadrature. Polynomial interpolation
elements of difference calculus, Newton and Lagrange formulas,
Aitken's interpolation method, quadrature formulas, Romberg
integrations, numerical differentiation and the inherent error
problems.

(c) Solution of Nonlinear Equations. Bisection method, suc-
cessive approximations including simple convergence proofs,
linearization and Newton's method, method of false-position.
Applications to polynomial equations. Generalization of iterative
methods for systems of equations.

(d) Linear Systems of Equations. Solution of linear systems
and determinant evaluation by elimination procedures. Roundoff
errors and ill-conditioning. Iterative methods.

(e) Numerical solution of ordinary differential equations
Euler's method, modified Euler's method, simplified Runge-
Kntta.

References :
MACON, NATHANIEL. Numerical Analysis. John Wiley and Sons,

New York, 1963.
NIELSEN, KAJ LEO. Methods in Numerical Analysis. 2nd ed.,

MacMillan, New York, 1964.
STIEFEL, EDWARD L. An Introduction to Numerical Mathematics.

Academic Press, New York, 1963.
MILNE, W.E. Numerical Calculus. Princeton U. Press, Princeton,

N.J., 1949.
STANTON, R. G. Numerical Methods for Science and Engineering.

Prentice-Hall, Englewood Cliffs, N. J., 1961.
KUNZ, K.S. Numerical Analysis. McGraw-Hill, New York, 1957.
SCARBOROUGH, J. Numerical Mathematical Analysis. Johns Hop-

kins U. Press, BMtimore, 1962.
MCCRACKEN, D., AND DORN, W. S. Numerical Methods and

FORTRAN Programming. John Wiley and Sons, New York,
1964.

WILKINSON, J. H. Rounding Errors in Algebraic Processes.
Prentice-Hall, Englewood Cliffs, N. J., 1964.

SALVADORI, M. G., AND BARON, M. L. Numerical Methods in
Engineering. 2nd ed., Prentice-Hall, Englewood Cliffs, N. J.,
1961.

HAMMING, RICHARD W. Numerical Methods for Scientists and
Engineers. McGraw-Hill, New York, 1962.

CONTE, S D. Elementary Numerical Analysis: An Algorithmic
Approach. McGraw Hill, New York, 1965.

4. I n f o r m a t i o n S t r u c t u r e s (2-2-3)
The purpose of the course is to provide an organized intro-

duction to structures of information sets which reflect the syn-
tactic or semantic relations in the information. The generation,
development, and processing of structures such as lists and trees
will be developed to illustrate interrelationships of data struc-
tures. A knowledge of machine instructions and storage hier-
archies sufficient for the execution of simple algorithms is pre-
supposed. Illustrative examples are used extensively.

Content :
(a) Description of a data base and its structure. The basic

V o l u m e 8 / Number 9 / September , 1965

concepts of functions, arrays, records, files, trees, lists, and list
structures.

(b) Fixed length, variable length, and mixed records; updating
and addition to records; absolute and relative referencing of a
record; linkages and transformation vectors and matrices; serial
and parallel flies; hierarchies of storage.

(c) Sorting, searching and retrieval from files; the role of pro-
grams in the data base, their relocation and allocation of storage.

(d) Transformations from one storage medium to a second or
the same; further topics on sorting and merging of files.

(e) Referencing and processing techniques based on structure
list processing, content addressing, cross referencing of files, trie
memories, etc.

References :
McCARTHY, J., ET AL. Lisp 1.5 Programmer's Manual. MIT

Press, Cambridge, Mass., 1962.
BORKO, H. (ED.) Computer Applications in the Behavioral Sciences.

Prentice-Hall, Englewood Cliffs, N. J., 1962.
BRUMM, G. L. A Study of Methods for Representing Data Structure.

Mitre W5570, The Mitre Corp., Nov. 1962.
KOSAKOFF, M., AND B~TSWELL, D. L. Variable information

processing. Preprints 1962 ACM Nat. Conf., Sept. 1962, 112.
WANG, T . L . An information system with the ability to extract

intelligence from data. Comm. ACM 5 (Jan. 1962), 16.
GREEN, B. F., JR., ~T AL. Baseball: an automatic question-

answerer. Proc. Western Joint Comput. Conf., May 1961.
IVERSON, K . E . A Programming Language. John Wiley and Sons,

New York, 1962.
NEWELL, A. (ED.). Information Processing Language-V Manual.

2nd ed., Prentice-Hall, Englewood Cliffs, N. J., 1964.
BROOKS, F. P., AND IVERSON, K . E . Automatic Data Processing.

John Wiley and Sons, New York, 1963.
MARKOW[TZ, H. M., HANSNER, BERNARD, AND ~[~ARR, H. W.

SIMSCRIPT, A Simulation Programming Language. Prentice-
Hall, Englewood Cliffs, N. J., 1963.

IRONS, E. T. "Structural connections" in formal languages.
Comm. ACM 7, 2 (Feb. 1964), 67-72.

PL/ I : Language Specification of IBM Operating System/360.
IBM File S 360-29, C 28-6571-0.

5. Algor i thmic L a n g u a g e s a n d C o m p i l e r s (3-9-3)
This course is designed to acquaint the student with the

fornml description of procedure-oriented languages and the
techniques useful in the translation of algorithms written in
these languages into computer programs.

Content:
(a) Formal Languages and their abstract description, in terms

of alphabet and syntax. Metalanguages such as Backus normal
form.

(b) Application of formal descriptions to languages such as
ALGOL and FORTRAN with a discussion of the ambiguities and
semantics involved.

(c) Definition of and writing compilers for simple languages
including some having a nonalgebraic base.

(d) The concept of procedures with attention to replication
and recursion in their use; binding and localizing of variables
including the use of block structures; dynanfic allocation of
storage and the conveying of data objects between sections of a
process.

(e) Syntactic decomposition and the theory of compilers which
are syntax directed or recursively controlled.

(f) Discussion of languages for particular application areas
including other than algebraic languages.

(g) Arrangement of languages into hierarchies.
References :

GRABBY, E. M., RA~O, SIMON, A N D WOOLDRIDGE, D. E. (EDS.)
Handbook of Automation, Computation, and Control. John
Wiley and Sons, New York, 1958.

BAUMANN, R., FELICIANO, M., BAUER, F. L., AND SAMELSON, I~.

C o m m u n i c a t i o n s o f t h e ACM 549

Introduction to ALGOL. Prentice-Hall, Englewood Cliffs,
N. J., 1964.

ACM COMPILER SYMPOSIUM. Comm. ACM 4 (Jan. 1961), 3-84.
ROSEN, SAUL. A computer-building system developed by Booker

and Morris. Comm. ACM 7 (July 1964), 403-414.
RANDALL, B., AND RUSSELL, L. J. ALGOL 60 Implementation.

Academic Press, New York, 1964.

6. Logic Des ign and Switching Theory (3-0-3) or (2-2-3)
The purpose of this course is to acquaint the student with the

logical design of computer elements and systems. The course can
be strengthened by demonstrations or laboratories.

Content:
(a) Boolean algebra, both set theoretic and axiomatic ap-

proach, manipulative rules, propositional logic, truth tables,
simplification including the use of Karnaugh maps, matrix repre-
sentation and methods.

(b) Application of Boolean algebra to switching, switches and
relays, tube and solid-state devices, design of combinational
circuits, examples of adders and code converters.

(c) Reduction to Boolean form of algorithmic or other descrip-
tions of processes.

(d) Basic notions of error detecting and correcting codes,
majority logic, and examples of these.

(e) Logic of storage elements, basic sequential circuits, digital
systems design principles.

References :
ARNOLD, B.H. Logic and Boolean Algebra. Prentice-Hall, Engle-

wood Cliffs, N. J., 1962.
BARTEE, T. C. Digital Computer Fundamentals. McGraw-Hill,

New York, 1962.
BRAUN, E. L. Digital Computer Design. Academic Press, New

York, 1963.
CALnWELL, S. H. Switching Circuits and Logical Design. John

Wiley and Sons, New York, 1958.
CIty, Y. Digital Computer Design Fundamentals. McGraw-Hill,

New York, 1962.
TOI:~NG, H. C. Introduction to the Logical Design of Switches

Systems. Addison Wesley, Reading, Mass., 1964.
BUCH~iOLz, W. Planning a Computer System. McGraw-Hill, New

York, 1962.
FLOi~ES, I. Computer Logic. Prentice-Hall, Englewood Cliffs,

N. J., 1960.
McCLusKEY, E. J., AND BARTEE, T. C. A Survey of Switching

Circuit Theory. McGraw-Hill, New York, 1962.
PttISTER, MONTGOMERY, JR. Logical Design of Digital Computers.

John Wiley and Sons, 1958.

7. Numerical Analys is I (3-0-3)
This course is intended to give a rigorous treatment of the

following topics :
(a) Solution of Equations. Newton's method and other iterative

methods for solving systems of equations; Aitken's A2 process;
Newton-Bairstow method. Muller's method, and Bernoulli's
method for polynomial equations; convergence and rates of con-
vergence are discussed for each method.

(b) Interpolation and Approximation. Polynomial interpo-
lation; Lagrange's method with error formula; Gregory-Newton
and other equal interval interpolation methods; systems of orthog-
onal polynomials; least squares approximation; trigonometric
approximation; best approximation in the Chebyshev sense.

(c) Numerical Differentiation and Quadrature. Formulas in-
volving equal intervals; Romberg integration, extrapolation to
the limit; Gaussian quadrature.

(d) Solution of Ordinary Differential Equations. Runge-Kutta
methods; multistep methods; predictor-corrector methods; sta-
bility.

8. Numerica l Analys is II (3-0-3)
(a) Linear Algebra. Rigorous treatment of elimination methods

and their use to solve linear systems, invert matrices, and evaluate

determinants; compact schemes; methods for solving the eigen-
value-eigenveetor problem including the power method, the
inverse power method, Jacobi's method, Givens' method and
Householder's method; roundoff analysis, conditioning.

(b) Numerical solution of boundary value problems in ordinary
differential equations.

(c) Introduction to the numerical solution of partial differential
equations. The emphasis is primarily in the computational aspects
of the use of finite difference methods for linear equations; de-
termination of grids; derivation of difference equations; the so-
lution of large linear systems by iterative methods such as simul-
taneous displacements, successive displacements, and successive
over-relaxation; norms and spectral radii of matrices and their
use in the study of convergence properties of various iterative
methods; applications to linear systems arising from elliptic
equations.

References :
See the references listed after course 3.
9. Computer and Programming Systems (3-0-3)

Selections for a single semester course can be made from the
material listed below.

Contents:
(a) Computer-0riented Programming Systems

(i) Design of assembly systems
(ii) Macro-instructions and their generalizations, con-

ditional and recursive macro-instructions
(iii) Structure of program libraries
(iv) Program intercommunication, linking and symbolic

references between programs at load time
(v) Input-output programming systems

(vi) Debugging systems, source language debugging at
load time

(vii) Meta-assembly systems and other approaches to
languages for writing software

(viii) Batch processing executive systems
(ix) Concept of a demand system

(b) Multi-programming and Multi-processor Systems
(i) Interrupt systems

(ii) Sequential multi-programming
(iii) Storage protection
(iv) Hardware aided multi-programming
(v) Priorities and scheduling

(vi) Dynamic allocation and reallocation of storage
(vii) On-line console time sharing systems

(1) Man-machine communication
(2) Special language requirements
(3) Online debugging

(viii) Use of Bulk Memory Devices for program storage
(ix) Storage of programs in intermediate language or in

partially translated form
(x) Use of optical input and output devices

(xi) Simple two-processor system in which one is a pe-
ripheral processor

(xii) Multiple processors with shared main memory and/or
shared peripheral devices

(xiii) Multi-computer communication handling and other
online real-time systems

(xiv) Programming system and language requirements in
multi-programming and multi-processor systems

References :
Systems manuals and various reports in Proceedings of Joint

Computer Conferences.
MEALY, GEORGE H. Operating systems. Doe. P-2584, RAND

Corp., Santa Monica, Calif.
WEGNER, P. (ED.) Introduction to System Programming. Aca-

demic Press, New York, 1964.
10. Combinatorics and Graph Theory (3-0-3)

The purpose of this course is to provide an introduction to
set theory, graph theory, and combinatorial analysis.

550 Communicat ions of the ACM Volume 8 / Number 9 / September,]965

Content:
C a) Set Theory

(i) Set algebra
(ii) Product sets

(iii) Relations and functions
(iv) Order relations
(v) Cardinality
(vi) Isomorphism

(b) Graph Theory
(i) Basic definitions and concepts

(ii) Undirected graphs
(1) Trees
(2) Graphs with cycles

(iii) Directed graphs
(iv) Operations on graphs

(c) Combinatorial Analysis
(i) Elementary combinatorics, binomial coefficients

(ii) The principle of inclusion and exclusion
(iii) Recurrence relations
(iv) Systems of distinct representatives
(v) Matrices of zeros and ones

(vi) Partition and compositions
(vii) Enumeration and Polya's Theorem

References :
BERGE, CLAUDE. Theory of Graphs and Its Applications. John

Wiley and Sons, New York, 1962.
HALL, MARSHALL A survey of combinatorial mathematics. In

I. Kaplansky, et M., Some Aspects of Analysis and Probability.
Surveys in Appl. Math. No. 4, John Wiley and Sons, Inc.,
New York, 1958.

XONIG, DENES. Theorie der endlichen und endlichen Graphen,
Kombinatorische Topologie der Streckenkomplexe. Chelsea
Publishing Co., New York, 1950.

FLAMENT, CLAEDE. Applications of Graph Theory to Group
Structure. Prentice-Hall, Englewood Cliffs, N. J., 1963.

OnE, OYSTEIN. Graphs and Their Uses. Random House, New
York, 1963.

RYSER, HERBERT J. Combinatorial Mathematics. John Wiley and
Sons, Inc., New York, 1963.

RIORDAN, JOHN. An Introduction to Combinatorial Analysis.
John Wiley and Sons, Inc., New York, 1958.

11. Systems S imulat ions (2-2-3)
This course gives an introduction to the development of

logical, numerical and statistical models of systems. Here the
computer is used to carry out actual experiments rather than to
compute results based on predetermined analysis.

Content:
(a) Basic elements involved in simulation such as entities,

attributes, events, actions, facilities, storage, clock time, queues,
routing, priority and their interrelation.

(b) A review of sampling theory and statistical inference;
random number generation, and simple queuing theory.

(c) Properties of languages useful in the description of models
including the introduction and use of specific languages such as
DYNAMO, GPSSII and SIMSCRIPT.

(d) Design of models including selection of scope, identification
of exogenous and endogenous events, generation and termination
of entities, establishment of facilities and queues, synchronization,
and collection of information.

(e) Development and testing of models including queuing
models, feed-back systems, storage systems, priority systems and
flow in complex networks. Comparison of various designs and
optimization of parameters.

References :
TOCHER, X.D. The Art of Simulation. D. Van Nostrand and Co.,

New York, 1963.
MARXOWITZ, HOUSNER, AND KARL. SIMSCRIPT: A Simulation

Language. Prentice-Hall, Englewood Cliffs, N. J., 1962.

NATIONAL BUREAU OF STANDARDS. Monte Carlo Methods. NBS
Appl. Math. Series 12, US Government Printing Off., Wash-
ington, D. C., 1951.

Symposium on Monte Carlo Methods. (U. of Florida) John Wiley
and Sons, Inc., New York, 1956.

GORDON, GEOFFREy. General Purpose System Simulator II.
IBM Corp., B2-6346, 1963.

McMILLAN, C., AND GONZOLEZ, R. F. Systems Analysis. Irwin,
Inc., 1965.

CHORAFAS, D. H. Systems and Simulation. Academic Press,
New York, 1965.

12. Mathemat ica l Opt imizat ion Techniques (3-0-3)
Optimization problems based on similar types of mathe-

matical models arise in the extremal problems of science and
engineering, in the analysis of complex systems, and in the solution
of single-stage and multi-stage decision problems in management
science. Mathematical optimization in these various areas is
closely associated with computer science because recently de-
veloped methods have, for the most part, been meaningful only
in conjunction with computer systems and programs, and through
computational experimentation to determine the merits of pro-
posed techniques.

The computer science course in this area should deal primarily
with algorithms (and their mathematical foundations) for optimi-
zation of determinate models. It should cover classical methods
for multivariate extremal problems as well as recent develop-
ments such as linear and dynamic programming. It should ex-
amine the computability limitations of the methods which are
presented as well as their capabilities. Development of flowcharts
and/or computer programming by students is recommended. A
substantial course in numerical analysis is a prerequisite to this
course.

Contents. Constrained extrema, Lagrange multipliers, gra-
dient methods, optimization properties of convex function, the
simplex method (linear programming), a quadratic programming
algorithm, dynamic programming.

References:
BALAKRISHNAN, A. V., AND NEUSTADT, L. W. (EDs.) Computing

Methods in Optimization Problems. Academic Press, New
York, 1964.

DANTZIG, G.B. Linear Programming and Extensions. Princeton
U. Press, Princeton, N. J., 1963.

BELLMAN, R. E., AND DREYFUS, S. E. Applied Dynamic Pro-
gramming. Princeton U. Press, Princeton, N. J., 1962.

HADLEY, G. Linear Programming. Addison-Wesley, Reading,
Mass., 1962.

LEITMANN, G. (ED.) Optimization Techniques with Applications
to Aerospace Systems. Academic Press, New York, 1962.

13. Construct ive Logic (3-0-3)
The purpose of this course is to provide a basic knowledge of

logic and Boolean algebra for the computer sciences. If course 6
is used as a prerequisite, then some of the topics below can be
eliminated to avoid duplication.

Content:
(a) Introduction

(i) Set Algebra
(ii) Product Sets

(iii) Relations and Functions
(b) Boolean Algebra
(c) Propositional Calculus

(i) Basic notation
(1) Standard
(2) Polish

(ii) Well-formed formulas
(iii) Truth-values and truth tables
(iv) Normal forms
(v) Axiomatics

Volume 8 / Number 9 / September, 1965 Communica t ions of the ACM 551

(d) Algorithms
(i) Intuitive discussion

(ii) Turing machines
(iii) Unsolvable problems

(e) Quantification theory
(i) Basic notation, well-formed formulas

(ii) Satisfiability and validity
(iii) Models
(iv) First Order Theories
(v) Completeness Theorems

(vi) Mata Theorems
(vii) Equality

(viii) Extension of first order theories
(ix) Normal forms
(x) Foundational considerations

References :
TR.AKItTENBROT, B. A. Algorithms and Automatic Computing

Machines. (Transl.) Heath and Company, Boston, 1963.
MENDELSON, ELLIOTT. Introduction to Mathematical Logic• Ch.

1 and 2, Van Nostrand, Princeton, N. J., 1964.
XOREHAOE, ROBERT R. Logic for the computer sciences• Comm.

A C M 7 (Apr. 1964), 216-218.
KLEENE, S. C. Introduction to Metamathematics. D. Van Nostrand,

New York, 1952.
DAVIS, MARTIN. Computability and Unsolvability. McGraw-ttill,

New York, 1958.
MAnKOV, A. A. Theory of Algorithms. (Transl.) Academy of

Sciences of the USSR, 1954. Available from Office of Technical
Services, US Department of Commerce, Washington, D. C.

14. I n t r o d u c t i o n to A u t o m a t a T h e o r y (3-0-3)
This course provides an introduction to automata theory. It

should be given at the senior level after the student has completed
such courses as constructive logic and algebraic structures.

Content:
(a) Definition of the notion of finite automata. Methods of

going from one type of description to another; state tables,
synchronous sequential circuits, etc.

(b) What can a finite automata do? Kleene's theorem on the
representability of events.

(c) Reduced forms for sequential machines.
(d) Algebraic description of finite automata; semi-groups,

partitions of semi-groups, monomorphisms; Hartmanis' partition
theory on nmchine structure.

(e) Introductory material on generator systems. Types 0, 1, 2,
and 3 grammars; introduction to algebraic linguistics.

(f) Other classes of machines: potentially infinite machines
such as Turing machines (a type zero grammar) nondeterministic
machines, probabilistic machines•

(g) The theory of computability. Statement of fundamental
theorems on recursive functions.

(h) The existence of self-reproducing and self-repairing ma-
chines. The theory of Von Neumann and Myhill.

(i) Programming systems as considered formally by Myhill or
Sheppardson and Sturgis. This gets to the core of the program
concept and introduces one to partial recursive functions with a
minimum of conceptual machinery.

ReJerences :
GILL, A. Introduction to the Theory of Finite State Machines.

McGraw-Hill, New York, 1962.
GINS~URG, S. A n Introduction to Mathematical Machine Theory.

Addison-Wesley, Cambridge, 1962.
McNAUGHTON, R. The theory of automata. In Advances in

Computers, Vol. 2, Academic Press, New York, 1961.
SHANNON AND McCARTHY. Automata Studies. Princeton U. Press,

Princeton, N. J., 1956.
MOORE, E. F. Sequential Machines. Addison-Wesley, Reading,

Mass., 1964.

15. F o r m a l L a n g u a g e s
(a) Programming languages--methods of specification, Backus

552 C o m m u n i c a t i o n s o f t h e ACM

normal form, syntax charts, Iverson notation.
(b) Natural languages--parsing, syntactic analysis.
(c) Formal languages--types of grammars, phrase structure,

production and recognition, context-sensitive, context-free,
bounded context.

(d) Mathematical properties of context-free languages, am-
biguity and decidability.

(e) The relation of formal languages to finite automata pro-
gramming languages and natural languages.

(f) Computer Applications, syntactic analysis of statements in
programming languages and in natural languages, syntax-directed
compilers.

References :
CHOMSKY, N., AND MILLER. Introduction to the formal analysis

of natural languages. Ch. 11 in Handbook of Mathematical
Psychology, Vol. I I (R. D. Luee, R. R. Bush, E. Galanter,
EDs.), John Wiley and Sons, New York, 1963.

Formal properties of grammars. Ch. 12 in Handbook of
Mathematical Psychology, Vol. I I (R. D. Luee, R. R. Bush,
E. Galanter, EDS.), John Wiley and Sons, New York, 1963.

RABIN, M. 0., AND SCOTT, D. Finite automata and their decision
problems. I B M J. Res. Develop. 8 (Apr. 1959), 114-124.

I(~rNO, S., AND OETTING~R, A. G. Syntactic structure and am-
biguity of English. Proe. 1963 Fall Joint Comput. Conf.,
Spartan Books, Baltimore, 1963.

BAn-HILLEL, Y., PERLES, M., AND S~IAMIR, E. On formal proper-
ties of simple phrase structure grammars. Z. Phonetik Sprach-
wiss. Kommunik.-forsch. 14 (1961), 145-172.

GREIBACH, S.A. Fornml parsing systems. Comm. A C M 7 (Aug.
1964), 499-504.

16. H e u r i s t i c P r o g r a m m i n g (3-0-3)t
This course introduces the student to some nonarithmetical

aspects of electronic computing. He has become acquainted with
certain simulation techniques and with the symbol-manipulating
power and general purpose nature of computers in other courses.
He now learns about projects which aim at either achieving goals
that are considered to require human mental capabilities (Arti-
ficial Intelligence) or modeling highly organized intellectual
activities (Simulation of Cognitive Behavior). The student also
hears about research areas closely related to the above two.

Content:
(a) (i)

(ii)
(iii)
(iv)

Computing machines and intelligence.
Game playing programs.
Theorem proving by computers.
Symbolic integration and differentiation on com-

puters.
(v) Natural language processors.

(vi) Pattern recognition.
(vii) Heuristic line balancing, and other proj eets.

(b) (i) The General Problem Solver.
(ii) Simulation of learning and concept formation.

(iii) Simulation of decision making.
(iv) Sinmlation of man-machine relations, of small group

behavior, etc.
(c) (i) Self-organizing systems.

(ii) Neural Cybernetics.
(iii) Automata theory.
(iv) Machine translation of languages.
(v) Information retrieval.

(vi) Automatic medical diagnosis.
(vii) Machine composition of music.

(viii) Automatic engineering design, etc.
Reference :

FEIGEN~AUM, E. A., AND FELDMAN, JULIAN (EDs.) Computer
and Thought. McGraw-Hill, New York, 1963. The whole book
contains useful reference material; attention is drawn to a
Selected Descriptor-Indexed Bibliography in Part 4, by
Marvin Minsky.

Volume 8 / Number 9 / September, 1965

