
C U R R I  C UL UM 68 

Recommendations for Academic Programs in Computer Science 

A REPORT OF THE ACM CURRICULUM COMMITTEE ON COMPUTER SCIENCE 

Dedicated to the Memory of Silvio O. Navarro 

This report contains recommendations on academic programs in computer science 
which were developed by the ACM Curriculum Committee on Computer Science. A 
classification of the subject areas contained in computer science is presented and 
twenty-two courses in these areas are described. Prerequisites, catolog descriptions, 
detailed outlines, and annotated bibliographies for these courses are included. Spe- 
cific recommendations which have evolved from the Committee's 1965 Preliminary 
Recommendations are given for undergraduate programs. Graduate programs in 
computer science are discussed, and some recommendations are presented for the 
development of master's degree programs. Ways of developing guidelines for doctoral 
programs are discussed, but no specific recommendations are made. The importance 
of service courses, minors, and continuing education in computer science is empha- 
sized. Attention is given to the organization, staff requirements, computer resources, 
and other facilities needed to implement computer science educational programs. 
KEY WORDS AND PHRASES: computer science courses, computer science curriculum, computer science 

education, computer science academic programs, computer science graduate programs, computer science 
undergraduate programs, computer science course bibliographies 

CR CATEGORIES: 1.52 

Volume 11 / Number 3 / March, 1968 Communications of the ACM 151 



Pre f i l ce  

The ('urrk":,:tum (Rm:mi~tee on C~m:puter Science {C:S} was imtiatlv 
formed in 1962 as a subcommi:tee of the tiduca~i~m Commit t ee  of the As,. 
suciation for Computing ),I::chinery. In the first iew ve:rs of its existem'e 
this subcommittee :unctioned rather informally by spons~>rmg a number of 
panel discussions and other sessions a,, v :ri<,,:s naiiona{ computer meetings. 
The  Curriculum Committee became  an independe~H c o m m i t t e e  of the A{~),I 
b: 19%4 a n d  begap ,  an  a c t i v e  efU',rt t~ {k~rmula~e d e t a i l e d  r e c o m m e n d a ~ h m s  

for c u r r i c u l a  in c o m p u t e r  s c i e n c e .  I t s  ~irs: r e p o r t ,  ~ 'An [ h H . t e r ! g r a d u a t e  P r o -  

gram in Computer  Science,--Prelhninary Recommendations" {I]. ~as  pu}> 
fished in the Sep:ember  1965 issue of ('on~n~un&aN,)na ()/;he A('M. 

The work of the C o m m i t t e e  duri~,:g :he last two years has been devoted  
to revisi~:g these r e c o m m e n d a t i o n s  on undergraduate  programs and deve lop .  
ing r e c o m m e n d a t i o n s  for graduate programs as contained in this report. F h e  
primary suppor~ for this work has been from the National  Science Founda- 
tion under (;ra::t Number GY-305. received in July 1965. 

T h e C o m m i t: ee m e m b e r s h ip d u r i n g t h e p r e pa r a t i ~ ~ n ::~f' t h i s r e p o r t w a s: 

William F. Atchison. Univerai~y of Maryland ( h;.~irmani 
Sam~el D. Conte~ Purdt~e [Tni,,ersit5' 
,Mh:: %' Hamb~en, SREB a:wt Georgia :~s:itu e ~ TechnNoXy 
Thomas E. Hull U::i~ er'shy ~ff Tomr:u.> 
rhomas A. Keenan. EDUCOM and :he t:niver~.ity of }in,chester 
Wii:iam g. He:hi. University of ('a:ifor::ia a: [,~s Angdes 
Hdward 1. McCluskey. S:a~:ford [ rdve:si:} 
Silvk~ O. Navarr< ~ Univershy ~f }(en~.ucky 
Werner (L I:Cheinbo:d~. :%:iversi:y of Maryland 
N4~r~ J. Schweppe, {;::i~.ersi~y of Mar)la::d {Secretary} 
Wil~iam Viava:r:, :)niversi:y ~f U.~a}~ 
[)avid M. %%:rag. Jr.. [ niversi:y of Texas 
" I)r. Navarre was killed in an airp[a::e crash ~n Apri: 3, 1967. 

:n addit ion :o these members many others }:ave made valuable  con~ribu.. 
:ions to the work of  the Commit t ee .  Their  n a m e s  and affitiatRms are listed 
at the end of" this report. Robert Ashenhurst  and Peter Wegner have given 
especial assistance in the preparation of this report. 

C() NT~'~NTS 

I. ~n~r~duct Mn !53 
2. Subject (las4~i~%aIio~ i54 

[)escr~p~ion f (J ~t~r~.e:,. 156 
4. :~Jnder~radua:e f:%Nrarr> :gl 
50 Mas~,r% Degrf~e Pr~gram~ If;;~; 

7. S,ervh~, [)<n4r,~:e~, Minor .  and (~mNnablg 
HducaN~m t 65 

~. Pmp~ementa:ion 16B 
H e f e r e n c e ~  : 6~4 
Ac kn~ 'w~dfrrnen~; 16~ 
ApRe:~d~:~. {7out~4~:, (}u~]b-~e~ and }~ib[io;:raiphie:.., U;O 

} ~ ! . ~ ; < % ~  ire ~ ~ ~ i  (>:¢! ~ ~ ' ~  ~ ' ~ " ~  ~ ¢  ~ ' r~  ~ : / ~ , ~  ~ ~ , ~ i ! ~  ; ~ i r ~ r  : ~ a .  ~..,1~;~r~#~ , ~b<~;~d !:~,, ~,- ,~:~ ~ ,  ~ / - ,!,,.~ ~ f  ( r~ ' i0 '~ : ,~ /c~: !~e~ ~ ~ ¢&~' ~ f ~ 1  i ~  ! ~ c  ~ : ~ ' ~ W  



. 

Following the appearance of its Preliminary Recom- 
mendations [1], the Curriculum Committee on Com- 
puter Science received many valuable comments, 
criticisms, and suggestions on computer science edu- 
cation. From these, the advice of numerous consul- 
tants, and the ideas of' many other people, the Com- 
mittee has prepared this report, "Curr icu lum 68," 
which is a substantial  refinement and extension of the 
earlier recommendations. The Committee hopes that 
these new recommendations will stimulate further dis- 
cussion in this area and evoke additional contributions 
to its future work from those in the computing pro- 
fession. The Committee believes strongly that a con- 
tinuing dialogue on the process and goals of education 
in computer science will be vital in the years to come. 

In its Preliminary Recommendations the Committee 
devoted considerable attention to the justification and 
description of "computer science" as a discipline. Al- 
though debate on the existence of such a discipline 
still continues, there seems to be more discussion to- 
day on what this discipline should be called and what 
it should include. In a recent letter [2], Newell, Perlis, 
and Simon defend the name "computer  science." 
Others, wishing perhaps to take in a broader scope 
and to emphasize the information being processed, ad- 
vocate calling this discipline "information science" 
[3] or, as a compromise, "the computer and informa- 
tion sciences" [4]. The Committee has decided to use 
the term "computer  science" throughout this report, 
although it fully realizes that  other names may be 
used for essentially the same discipline. 

In at tempting to define the scope of this discipline, 
the Committee split computer science into three 
major subject divisions to which two groups of related 
areas were then added. Using this as a framework, the 
Committee developed a classification of the subject 
areas of computer science and some of its related 
fields, and this classification is presented in Section 2. 

As was the case for its Preliminary Recommenda- 
tions, the Committee has devoted considerable effort 
to the development of descriptions, detailed outlines, 
and bibliographies for courses in computer science. 
Of the sixteen courses proposed in the earlier recom- 
mendations, eleven have survived in spirit if not in 
detail. Two of' the other five courses have been split 
into two courses each, and the remaining three have 
been omitted since they belong more properly to other 
disciplines closely related to computer science. In ad- 
dition seven new courses have been proposed, of 
which Course B3 on "discrete structures" and Course 
I3 on "computer  organization" are particularly nota- 
ble. Thus this report contains detailed information-- 
in the form of catalog descriptions and prerequisites 
in Section 3 and detailed outlines and annotated bib- 

Introduction 

liographies in the Appendix--on a total of twenty-two 
courses. 

Another important issue which concerned the Cur- 
riculum Committee is the extent to which undergrad- 
uate programs as opposed to graduate programs in 
computer science ought to be advocated. Certainly, 
both undergraduate and graduate programs in "com- 
puter science" do now exist, and more such programs 
operate under other names such as "information 
science" or "data processing" or as options in such 
fields as mathematics or electrical engineering. A re- 
cent survey [5], supported by the National Science 
Foundation and carried out by the Computer Sciences 
Project of the Southern Regional Education Board, 
contains estimates of the number of such degree pro- 
grams operating in 1964-1965 and projections of the 
number planned to be operating by 1968-1969. These 
estimates and projections can be summarized as fol- 
lows: 

Pl'Ogl*altl ?~allle 

Computer  Science 
Da ta  Processing 
In format ion  Science 
Similar  P rograms  

Program level 
Bachelor's Master's Doctoral 

1964 1968 1964 1968 1964 1968 
1965 1969 1965 1969 1965 1969 

11 92 17 76 12 38 
(i 15 3 4 t 2 
2 4 12 17 4 13 

25 40 29 40 21 28 

The information contained in these figures is interest- 
ing for two reasons. First, it shows that the number of 
computer science degree programs will continue to 
grow rapidly even if some of the programs now being 
planned do not come into being. Second, it shows a 
strong tendency to use the name "computer science," 
although the availability of academic work in comput- 
ing is not limited to institutions having a department 
or a program operating under that title. 

A major purpose of the Committee's recommenda- 
tions on undergraduate programs and master's degree 
programs given in Sections 4 and 5 is to provide a 
sense of direction and a realizable set of goals for 
those colleges and universities which plan to provide 
computer science education for undergraduate and/or  
graduate students. The discussion in Section 6 of how 
guidelines for doctoral programs may be developed is 
very general, mainly because this is a difficult area in 
which to make detailed recommendations. 

The importance of service courses, minors, and con- 
tinued education in computer science has also been 
of concern to the Committee. Although detailed work 
still needs to be done, some preliminary discussion of 
the needs in these areas is given in Section 7. In Sec- 
tion 8 some of the problems of implementing an edu- 
cational program in computer science are discussed. 

V o l u m e  I 1 / N u m b e r  3 / M a r c h ,  1968 C o m m u n i c a t i o n s  o f  t i l e  ACM 153 



In general the difficulties in establishing such pro- 
grams are formidable; the practical problems of find- 
ing qualified faculty, of providing adequate laboratory 
facilities, and of beginning a program in a new area 
where there are few textbooks are severe. These prob- 
lems are magnified for baccalaureate programs in com- 
parison with graduate programs, where the admission 
can be more closely controlled. 

The demand for substantially increased numbers of 
persons to work in all areas of computing has been 
noted in a report of the National Academy of Sciences- 
National Research Council [6] (commonly known as 
the "Rosser Report") and in a report of the President 's 
Science Advisory Committee [7] (often called the 
"Pierce Report"). Although programs based on the 
recommendations of the Curriculum Committee can 
contribute substantially to satisfying this demand, 
such programs will not cover the full breadth of the 
need for personnel. For example, these recommenda- 
tions are not directed to the training of computer op- 
erators, coders, and other service personnel. Training 
for such positions, as well as for many programming 
positions, can probably be supplied best by applied 
technology programs, vocational institutes, or junior 
colleges. It is also likely that  the majority of applica- 
tions programmers in such areas as business data 
processing, scientific research, and engineering analy- 
sis will continue to be specialists educated in the re- 
lated subject matter  areas, although such students 
can undoubtedly profit by taking a number of com- 
puter science courses. 

In addition to this Committee, several other organi- 
zations have set forth guidelines to aid educational 
institutions in the establishment of programs perti- 
nent to the needs of today's computer-oriented tech- 
nology. Prominent among these are the reports of the 
Committee on the Undergraduate Program in Mathe- 
matics (CUPM) of the Mathematical  Association of 
America [8], the COSINE Committee of the Commis- 
sion on Engineering Education [9], and the Education 
Committee of' the British Computer Society [10]. Also, 
the ACM Curriculum Committee on Computer Educa- 
tion for Management,  chaired by Daniel Teichroew, is 
now beginning to consider educational matters related 
to the application of computers to "management  infor- 
mation systems." The Curriculum Committee has 
benefited greatly from interchanging ideas with these 
other groups. In addition, the entire Committee was 
privileged to take part in "The Graduate Academic 
Conference in Computing Science" [11] held at Stony 
Brook in June 1967. 

Computer science programs, in common with those 
of all disciplines, must a t t empt  to provide a basis of 
knowledge and a mode of thinking which permit con- 
tinuing growth on the part  of their graduates. Thus, 
in addition to exposing the s tudent  to a depth of 
knowledge in computer science sufficient to lay the 
basis for professional competence, such programs 
must also provide the s tudent  with the intellectual 
maturi ty which will allow him to stay abreast  of his 
own discipline and to interact with other disciplines. 

2. Subject Classification 

The scope of academic programs and curricula in 
computer science will necessarily vary from institu- 
tion to institution as dictated by local needs, resources, 
and objectives. To provide a basis for discussion, how- 
ever, it seems desirable to have a reasonably compre- 
hensive system for classifying the subject areas within 
computer science and related fields. Although any such 
system is somewhat arbitrary, it is hoped that  any 
substantial aspect of the computer field, unless spe- 
cifically excluded for stated reasons, may be found 
within the system presented here. The subject areas 
within computer science will be classified first; those 
shared with or wholly within related fields will be 
discussed later in this section. 

Computer Science. The subject areas of computer 
science are grouped into three major divisions: "infor- 
mation structures and processes," "information proc- 
essing systems," and "methodologies." The subject 
areas contained in each of these divisions are given 
below together with lists of the topics within each 
subject area. 

I. INFORMATION STRUCTURES AND PROCESSES 

This subject division is concerned with representations and 
trans[ormations of in[ormation structures and with theoreti- 
cal models [or such representations and trans[ormations. 

1. DATA STRUCTURES: includes the description, representation, and 
manipulation of numbers, arrays, lists, trees, files, etc.; storage or- 
ganization, allocation, and access; enumeration, searching and sort- 
ing; generation, modification , transformation, and deletion tech- 
niques; the static and dynamic properties of structures; algorithms 
for the manipulation of sets, graphs, and other combinatoric struc- 
tures. 
2. PROGRAMMING LANGUAGES: includes the representation of algo- 
rithms; the syntactic and semantic specification of languages; the 
analysis of expressions, statements, declarations, control structures, 
and other features of programming languages; dynamic structures 
which arise during execution; the design, development and evalu- 
ation of languages; program efficiency and the simplification of 
programs; sequential transformations of program structures; special 
purpose languages; the relation between programming languages, 
formal languages, and linguistics. 
3. MODELS OF COMPUTATION: includes the behavioral and structural 
analysis of switching circuits and sequential machines; the proper- 
ties and classification of automata; algebraic automata theory and 
model theory; formal languages and formal grammars; the classifi- 
cation of languages by recognition devices; syntactic analysis; formal 

154 C o m m u n i c a t i o n s  of the  ACM Volume 1l / Number  3 / March, 1968 



specification of semantics; syntax directed processing; decidability 
problems tbr grammars; the treatment of programming languages as 
automata; other tbrmal theories of' programming languages and com- 
putation. 

II. INFORMATION PROCESSING SYSTEMS 

"['his subject division is concerned with systems having the 
ability to transform information. Such systems usually in- 
volve the interaction of hardware and software. 

1. COMPUTER DESIGN AND ORGANIZATION: includes types of com- 
puter structure--yon Neumann computers, array computers, and 
look-ahead computers; hierarchies of memory--flip-flop registers, 
cores, disks, drums, tapes--and their accessing techniques; micro- 
programming and implementation of control functions; arithmetic 
circuitry; instruction codes; input-output techniques; multiproc- 
essing and multiprogramming structures. 

2. TRANSLATORS AND INTERPRETERS: includes the theory and tech- 
niques involved in building assemblers, compilers, interpreters, 
loaders, and editing or conversion routines (media, format, etc.). 

3. COMPUTER AND OPERATING SYSTEMS: includes program monitoring 
and data management; accounting and utility routines; data and 
program libraries; modular organization of systems programs; inter- 
laces and communication between modules; requirements of multi- 
access, multiprogram and multiprocess environments; large scale 
systems description and documentation; diagnostic and debugging 
techniques; measurement of performance. 

4. SPECIAL PURPOSE SYSTEMS: includes analog and hybrid com- 
puters; special terminals for data transmission and display; periph- 
eral and interface units for particular applications; special software 
to support these. 

III. METHODOLOGIES 

Methodologies are derived from broad areas of applications 
of computing which have common structures, processes, and 
techniques. 

1. NUMERICAL MATHEMATICS: includes numerical algorithms and their 
theoretical and computational properties; computational error analy- 
sis (fbr rounding and truncation errors}; automatic error estimates 
and convergence properties. 

2. DATA PROCESSING AND FILE MANAGEMENT: includes techniques 
applicable to library, biomedical, and management information 
systems; file processing languages. 
3. SYMBOL MANIPULATION: includes formula operations such as sim- 
plification and formal differentiation; symbol manipulation lan- 
guages. 
4. TEXT PROCESSING: includes text editing, correcting, and jus- 
tification; the design of concordances; applied linguistic analysis; 
text processing languages. 

5. COMPUTER GRAPHICS: includes digitizing and digital storage; 
display equipment and generation; picture compression and image 
enhancement; picture geometry and topology; perspective and rota- 
tion; picture analysis; graphics languages. 
6. SIMULATION: includes natural and operational models; dis- 
crete simulation models; continuous change models; simulation lan- 
guages. 
7. INFORMATION RETRIEVAL: includes indexing and classification; 
statistical techniques; automatic classification; matching and search 
strategies; secondary outputs such as abstracts and indexes; selec- 
tive dissemination systems; automatic question answering systems. 
8. ARTIFICIAL INTELLIGENCE: includes heuristics; brain models; pat- 
tern recognition; theorem proving; problem solving; game playing; 
adaptive and cognitive systems; man-machine systems. 

9. PROCESS CONTROL: includes machine tool control; experiment 
control; command and control systems. 
10. INSTRUCTIONAL SYSTEMS: includes computer aided instruction. 

Volume l I  / Number  3 / March, 1968 

Related Areas. In addition to the areas of computer 
science listed under the three divisions alJove, there 
are many related areas of mathematics, statistics, 
electrical engineering, philosophy, linguistics, and in- 
dustrial engineering or management which are es- 
sential to balanced computer science programs. Suit~ 
able courses in these areas should be developed 
cooperatively with the appropriate departments, al- 
though it may occasionally be desirable to develop 
some of these courses within the computer science 
program. 

Since it is not feasible in this report to list all of the 
areas which might be related to a computer science 
program, let alone indicate where courses in these 
areas should be taught, the following listing is some- 
what restricted. It is grouped into two major divisions: 
"mathematical  sciences" and "physical and engineer- 
ing sciences." 

IV. MATHEMATICAL SCIENCES 

I. ELEMENTARY ANALYSIS 

2. LINEAR ALGEBRA 

3. DIFFERENTIAL EQUATIONS 

4. ALGEBRAIC STRUCTURES 

5. THEORETICAL NUMERICAL ANALYSIS 

6. METHODS OF APPLIED MATHEMATICS 

7. OPTIMIZATION THEORY 

8. COMBINATORIAL MATHEMATICS 

9. MATHEMATICAL LOGIC 

10. NUMBER THEORY 
ll.  PROBABILITY AND STATISTICS 

12. OPERATIONS ANALYSIS 

V. PHYSICAL AND ENGINEERING SCIENCES 

I. GENERAL PHYSICS 

2. BASIC ELECTRONICS 

3. CIRCUIT ANALYSIS AND DESIGN 

4. THERMODYNAMICS ANn STATISTICAL MECHANICS 

5. FIELD THEORY 

6. DIGITAL AND PULSE CIRCUITS 

7. CODING AND INFORMATION THEORY 

8. COMMUNICATION AND CONTROL THEORY 

9. QUANTUM MECHANICS 

No attempt has been made to include within this 
classification system all the subject areas which make 
use of computer techniques, such as chemistry and 
economics; indeed, to list these would require inclu- 
sion of a major portion of the typical university cata- 
log. Furthermore, the sociological, economic, and edu- 
cational implications of developments in computer 
science are not discussed in this report. These issues 
are undoubtedly important, but they are not the ex- 
clusive nor even the major responsibility of computer 
science. Indeed, other departments such as philosophy 
and sociology should be urged to cooperate with com- 
puter scientists in the development of courses or 
seminars covering these topics, and computer science 
students should be encouraged to take these courses. 

Communica t ions  of the ACM 155 



. 

The computer science courses specified in this re- 
port are divided into three categories: "basic," "inter- 
mediate," and "advanced."  The basic courses are 
intended to be taught primarily at the freshman-soph- 
omore level, whereas both the intermediate and the 
advanced courses may be taught at the junior-senior 
or the graduate level. In general, the intermediate 
courses are strongly recommended as part of under- 
graduate programs. The advanced courses are classi- 
fied as such either because of their higher level of 
prerequisites and required maturi ty or because of 
their concern with special applications of computer 
science. 

In addition to more elementary computer science 
courses, certain courses in mathematics are necessary, 
or at least highly desirable, as prerequisites for some 
of the proposed courses. More advanced mathematics 
courses may be included as supporting work in the 
programs of some students. Because of the considera- 
ble variation in the level and content of mathematics 
courses among (and even within) schools, the courses 
described by the Committee on the Undergraduate 
Program in Mathematics (CUPM) in the report, " A  

General Curriculum in Mathematics for Colleges" 
[12] have been used to specify the prerequisites for the 
proposed courses in computer science and require- 
ments for degrees. Other pertinent mathematics 
courses are described in the CUPM reports, "Recom- 
mendations on the Undergraduate Mathematics Pro- 

D e s c r i p t i o n  of  C o u r s e s  
gram for Engineers and Physicists" [13] and "A Cur- 
riculum in Applied Mathematics"  [14]. 

The titles and numbers of all the courses proposed 
in this report and the pertinent courses recommended 
by CUPM are shown in Figure 1 along with the pre- 
requisite structure linking these courses. The courses 
described below, which make up the core of the under- 
graduate program, are also singled out in Figure 1. 
The relatively strong prerequisite structure proposed 
fbr these core courses allows their content to be 
greatly expanded from what a weaker structure would 
permit. The Committee recognizes that  other-per-  
haps weaker--prerequisite structures might also be ef- 
fective and that  the structure shown will change along 
with the course content as computer science education 
develops. Prerequisites proposed for the advanced 
courses are subject to modification based on many 
orientations which these courses may be given at in- 
dividual institutions. 

Most of the courses have been designed on the ba- 
sis of three semester hours of credit. Laboratory ses- 
sions, in which the more practical aspects of the ma- 
terial can be presented more effectively than in formal 
lectures, have been included where appropriate. The 
proposed number of hours of lecture and laboratory 
each week and the number of semester hours of credit 
for the course are shown in parentheses in the catalog 
descriptions below. For example, (2-2-3) indicates two 
hours of lecture and two hours of laboratory per week 
for a total of three semester hours of credit. 

Course Catalog Descriptions and Prerequisites 

For each of the courses listed below, a brief state- 
ment on the approach which might be taken in teach- 
ing it is given in the Appendix along with the detailed 
outlines of its proposed contents and annotated bib- 
liographies of pertinent source materials and textbooks. 

~ T h e  first course is designed to provide the student 
with the basic knowledge and experience necessary to 
use computers effectively in the solution of problems. 
It can be a service course for students in a number of 
other fields as well as an introductory course fbr majors 
in computer science. Although no prerequisites are 
listed, it is assumed that  the student will have had a 
minimum of three years of high school mathematics. 
All of the computer science courses which follow will 
depend upon this introduction. 

Course B1. Introduction to Computing (2-2-3) 

Algorithms, programs, and computers. Basic programming and pro- 
gram structure. Programming and computing systems. Debugging 

and verification of programs. Data representation. Organization and 
characteristics of computers. Survey of computers, languages, sys- 
tems, and applications. Computer solution of several numerical and 
nonnumerieal problems using one or more programming languages. 

~ T h e  second course is intended to lay a foundation 
for more advanced study in computer science. By 
familiarizing the student with the basic structure and 
language of machines, the content of' this course will 
give him a better understanding of the internal behav- 
ior of computers, some facility in the use of' assembly 
languages, and an ability to use computers more ef- 
fec t ively-even with procedure-oriented languages. 

Course B2. Computers and Programming (2-2-3) 

Prerequisite: Course B1. 

Computer structure, machine language, instruction execution, ad- 
dressing techniques, and digital representation of' data. Computer 

156 Communica t ions  of the  ACM Volume II / Number 3 / March, 1968 



THE CORE COURSES OF THE PROPOSED _NDERGRADUATE >ROGRAM 

ntro(mc[ion 
[o 

Computing 

Computers 
and 

Programming 

11 
Data 

Structures 

Programming 
Languages 

Systems 
Programming 

Compiler 
Construction 

F~al Ii Languages 
and Syntactic 

A°°'9_L.- I 

/ 5  
~ l l ~ a t  ~(~ln~ information 

A6 

Computer 
Graphics 

Ll,nd ...... ] 
Definite 
Prerequisite 

!:ii:i l ̧ 
Vo lume I I  / Nu ,nbe r  3 / March ,  1968 

introduction 
to 

Discrete 

I 
I 

I 
I 

Computer 
Organization 

I 
I 

I 
I 

I 
I 

Linear 
Algebra 

. ,ca, i i . . . .  I Calculus Probabtltty 

' .___T--J 

Probability 
ann 

Stat=sttcs 

Switching 
Theory 

Sequential 
Machines 

A2 / i i i  A0 . . . . .  0 Ai 0 
Computer Hybrid 

a ~  

0 ganization J [ Computing 

A7 
Theory 

of 
Computability 

B indicates a Basic Computer Science Course ,,',,| 
/ 

[ indicates an Intermediate Computer Science Course J A indicates an Advanced Computer Science Course M indicates a CUPM Mathematics Course 

Fro. 1. Prerequis i te  s t ruc tu re  of courses  

M ~,thernatlcal 
Analysis I 

Mathematical 
Analysis II 

I Algebram 
Structures 

Numerical 
Analysis I 

\ 
\ 

System 
Simulation 

f \ \ \  

\ \ \ \  

Large-Scale 
Information 
Processing 
Systems 

Artificial 
intelligence 

and Heuristic 
Programming 

I ~ Indicates ' 1 Desirable 
Prerequisite 

Communicat ions  of tile ACM 

Advanced 
MultJvariable 

Calculus 

I 
I 
I 
l 
I 

I 

i 
I 

Numerical 
Analysis II 

157 



systems organization, logic design, micro-programming, and inter- 
preters. Symbolic coding and assembly systems, macro definition 
and generation, and program segmentation and linkage. Systems and 
utility programs, programming techniques, and recent develop- 
ments in computing. Several computer projects to illustrate basic 
machine structure and programming techniques. 

[ZThis course introduces the student  to those funda- 
mental algebraic, logical, and combinatoric concepts 
from mathematics needed in the subsequent computer 
science courses and shows the applications of these 
concepts to various areas of computer science. 

Course B3. Introduction to Discrete Structures (3-0-3) 

Prerequisite: Course B1. 

Review of set algebra including mappings and relations. Algebraic 
structures including semigroups and groups. Elements of the theory 
of directed and undirected graphs. Boolean algebra and proposi- 
tional logic. Applications of these structures to various areas of 
computer science. 

[~This course provides the student with an intro- 
duction to the basic numerical algorithms used in sci- 
entific computer work--thereby complementing his 
studies in beginning analysis--and affords him an op- 
portunity to apply the programming techniques he 
has learned in Course B1. Because of these aims, many 
of the standard elementary numerical analysis courses 
now offered in mathematics departments cannot be 
considered as substitutes for this course. 

[ ]The  following intermediate course is designed to 
present a systematic approach to the study of' program- 
ming languages and thus provide the student with the 
knowledge necessary to learn and evaluate such lan- 
guages. 

Course I2. Programming Languages (3-0-3) 

Prerequisites: Courses B2 and B3. 

Formal definition of programming languages including specification 
of syntax and semantics. Simple statements including precedence, 
infix, prefix, and postfix notation. Global properties of algorithmic 
languages including scope of declarations, storage allocation, gi'oup- 
ing of statements, binding time of constituents, subroutines, corot- 
tines, and tasks. List processing, string manipulation, data descrip- 
tion, and simulation languages. Run-time representation of program 
and data structures. 

LIThe following course discusses the organization, 
logic design, and components of digital computing sys- 
tems. It can be thought of as a continuation of the 
hardware concepts introduced in Course B2. 

Course I3. Computer Organization (3-0-3) or (3-2-4) 

Prerequisites: Courses B2 and B3. 

Basic digital circuits, Boolean algebra and combinational logic, data 
representation and transfer, and digital arithmetic. Digital storage 
and accessing, control functions, input-output facilities, system or- 
ganization, and reliability. Description and simulation techniques. 
Features needed for multiprogramming, multiprocessing, and real- 
time systems. Other advanced topics and alternate organizations. 

Course B4. Numerical Calculus (2-2-3) 

Prerequisites: Courses B1, M2, and M3. 

An introduction to the numerical algorithms fundamental to scienti- 
fic computer work. Includes elementary discussion of error, polyno- 
mial interpolation, quadrature, linear systems of equations, solution 
of nonlinear equations, and numerical solution of ordinary differen- 
tial equations. The algorithmic approach and the efficient use of 
the computer are emphasized. 

[ ]This  course is concerned with one of the most fun- 
damenta l - -but  often inadequately recognized--areas of 
computer science. Its purpose is to introduce the stu- 
dent to the relations which hold among the elements 
of data involved in problems, the structures of storage 
media and machines, the methods which are useful in 
representing structured data in storage, and the tech- 
niques for operating upon data structures. 

Course I1. Data Structures (3-0-3) 

Prerequisites: Courses B2 and B3. 

Basic concepts of data. Linear lists, strings, arrays, and orthogonal 
lists. Representation of trees and graphs, Storage systems and struc- 
tures, and storage allocation and collection. Multilinked structures. 
Symbol tables and searching techniques. Sorting (ordering) tech- 
niques. Formal specification of data structures, data structures in 
programming languages, and generalized data management systems. 

~ T h e  following course is concerned primarily with 
the software organization--and to a lesser extent the 
hardware of computer systems which support a wide 
variety of users. It is intended to bring together the 
concepts and techniques developed in the previous 
courses on data structures, programming languages, 
and computer organization by considering their role 
in the design of general computer systems. The prob- 
lems which arise in multiaccessing, multiprogram- 
ming, and multiprocessing are emphasized. 

Course I4. Systems Programming (3-0-3) 

Prerequisites: Courses I1, I2, and I3. 

Review of batch process systems programs, their components, op- 
erating characteristics, user services and their limitations. Im- 
plementation techniques for parallel processing of input-output and 
interrupt handling. Overall structure of multiprogramming systems 
on multiprocessor hardware configurations. Details on addressing 
techniques, core management, file system design and management, 
system accounting, and other user-related services. Traffic control, 
interprocess communication, design of system modules, and inter- 
faces. System updating, documentation, and operation. 

D T h e  following course is intended t o  provide a de- 
tailed understanding of the techniques used in the de- 
sign and implementation of compilers. 

158 C o m m u n i c a t i o n s  o f  t i l e  ACM V o l u m e  II / Number  3 / March, 1968 



)urse I5. Compiler Construction (3-0-3) 

erequisites: Courses I1 and 12. 

view of' program language structures, translation, loading, execu- 
n, and storage allocation. Compilation of simple expressions and 
Ltements. Organization of' a compiler including compile-time and 

run-time symbol tables, lexical scan, syntax scan, object code gen- 
eration, error diagnostics, object code optimization techniques, and 

: i  overall design. Use of compiler writing languages and bootstrapping. 

~ [~Thls  . . . . .  course  i n t r o d u c e s  t he  theore t i ca l  pr inc ip les  a~ • 

and m a t h e m a t i c a l  t e c h n i q u e s  involved  in the  design 
~'~ of digi tal  s y s t e m  logic. A course  c o m p a t i b l e  wi th  the  

con ten t  a n d  a p p r o a c h  of  th is  course is f r equen t ly  
t augh t  in d e p a r t m e n t s  of  e lec t r ica l  engineer ing .  

Course I6. Switching Theory (3-0-3) or (2-2-3) 

Prerequisites: Courses B3 (desirable) and I3 (desirable, as it would 
allow more meaningful examples to be used). 

Switching algebra, gate network analysis and synthesis, Boolean 
algebra, combinational circuit minimization, sequential circuit 
analysis and synthesis, sequential circuit state minimization, haz- 
ards and races, and elementary number systems and codes. 

~ T h i s  t heo re t i c a l  course  is espec ia l ly  r e c o m m e n d e d  
f o r  u n d e r g r a d u a t e  s t u d e n t s  p l a n n i n g  to do g r a d u a t e  
w o r k  in c o m p u t e r  science.  I t  is also an  a p p r o p r i a t e  

course for e lec t r ica l  eng ineers  a n d  m a y  s o m e t i m e s  be 
avai lable  f rom or jo in t ly  deve loped  wi th  an  e lect r ical  
engineer ing  d e p a r t m e n t .  

Course I7. Sequential Machines (3-0-3) 

Prerequisites: Courses B3 or M6, and I6 (desirable). 

Definition and representation of finite state automata and sequen- 
tial machines. Equivalence of states and machines, congruence, re- 
duced machines, and analysis and synthesis of machines. Decision 
problems of finite automata, partitions with the substitution prop- 
erty, generalized and incomplete machines, semigroups and ma- 
chines, probabilistic automata, and other topics. 

~ T h e  fol lowing two courses  in n u m e r i c a l  ana lys i s  are 
i n t ended  to be m a t h e m a t i c a l l y  r igorous a n d  a t  the  
same  t ime  c o m p u t e r - o r i e n t e d .  

Course I8. Numerical Analysis I (3-0-3) 

Prerequisites: Courses B1, B4 (desirable), and M4. 

A thorough treatment of solutions of equations, interpolation and 
approximations, numerical differentiation and integration, and nu- 
merical solution of initial value problems in ordinary differential 
equations. Selected algorithms will be programmed for solution on 
computers. 

Course I9. Numerical Analysis II (3-0-3) 

Prerequisites: Courses B1, B4 (desirable), M4, and M5 (desirable). 

T h e  solution of" linear systems by direct and iterative methods, ma- 
:sion, the evaluation of determinants, and the calculation 
clues and eigenvectors of matrices. Application to bound- 

cry value problems in ordinary differential equations. Introduction 
to the numerical solution of partial differential equations. Selected 
algorithms will be programmed for solution on computers. 

~ j T h e  fol lowing course serves as an i n t roduc t i on  bo th  
t o  the  theory  of  context - f ree  g r a m m a r s  and  formal  lan- 
guages,  and  to  syn tac t i c  recogni t ion  t echn iques  for 
recogniz ing  l anguages  specif ied by contex t - f ree  g ram-  
mars .  

Course A1. Formal Languages and Syntactic 
Analysis (3-0-3) 

Prerequisites: Courses I1 and I2. 

Definition of formal grammars: arithmetic expressions and prece- 
dence grammars, context-free and finite-state grammars. Algorithms 
for syntactic analysis: recognizers, backtracking, operator prece- 
dence techniques. Semantics of grammatical constructs: reductive 
grammars, Floyd productions, simple syntactical compilation. Re- 
lationship between formal languages and automata. 

~ T h e  fol lowing a d v a n c e d  course  in c o m p u t e r  organi-  
za t ion  is cen te red  a r o u n d  the  c o m p a r i s o n  of  solut ions 
to  basic  des ign p rob l ems  wh ich  have  been  incorpo-  
r a t ed  in a n u m b e r  of qui te  d i f ferent  compu te r s .  

Course A2. Advanced Computer Organization (3-0-3) 

Prerequisites: Courses I3, I4 (desirable), and I6 (desirable). 

Computer system design problems such as arithmetic and nonarith- 
metic processing, memory utilization, storage management, address- 
ing, control, and input-output. Comparison of specific examples of 
various solutions to computer system design problems. Selected 
topics on novel computer organizations such as those of array or 
cellular computers and variable structure computers. 

[ ] T h i s  course is des igned to give the  c o m p u t e r  science 
s t u d e n t  some  exper ience  wi th  analog,  hybr id ,  a n d  re- 
l a ted  t echn iques .  I t  could also be very  va luab le  as  a 
service course.  

Course A3. Analog and Hybrid Computing (2-2-3) 

Prerequisites: Courses 131 and M4. (The CUPM mathematical anal- 
ysis courses include some differential equations; more may be 
needed.) 

Analog, hybrid and related digital techniques for the solution of 
differential equations. Analog simulation languages. Scaling meth- 
ods. Operational characteristics of analog components. Digital dif- 
ferential analyzers. Analog-to-digital and digital-to-analog conver- 
sion. Stability problems. Modeling methods. Use of analog and 
hybrid equipment and of digital simulation of continuous systems. 

~ T h e  fol lowing course is conce rned  with the  s imula-  
t ion  and  mode l ing  of  d iscre te  sy s t ems  on a compute r .  
S ince  s i m u l a t i o n  is one of  the  mos t  c o m m o n  appl ica-  
t ions  of  c o m p u t e r s  and  is used to a grea t  ex t en t  in the 
des ign of  c o m p u t i n g  m a c h i n e s  and  sys tems ,  s tuden t s  
o f  c o m p u t e r  sc ience  shou ld  become  a c q u a i n t e d  wi th  
s imu la t i on  t e chn iques  and  thei r  use. 

l I / Nt, mber 3 / March, 1968 Communicat ions  of  the ACM 159 



Course A4. System Simulation (3-0-3) 

Prerequisites: Courses I4 and M7. 

Introduction to simulation and comparison with other techniques. 
Discrete simulation models, and introduction to, or review of. queue- 
ing theory and stochastic processes. Comparison of discrete change 
simulation languages. Simulation methodology including generation 
of random numbers and variates, design of simulation experiments 
for optimization, analysis of data generated by simulation experi- 
ments, and validation of simulation models and results. Selected 
applications of simulation. 

Course A7. Theory of Computability (3-0-3) 

Prerequisites: Courses B3 or M6, and I7 (desirable). 

Introduction to Turing machines, Wang machines, Shepherdson- 
Sturgis, and other machines. GOdel numbering and unsolvability re- 
sults, the halting problem, Post's correspondence problem, and 
relative uncomputability. Machines with restricted memory access, 
limited memory, and limited computing time. Recursive function 
theory and complexity classification. Models of computation includ- 
ing relationships to algorithms and programming. 

~ T h e  purpose  of the following course is to provide  an 
in t roduct ion  to na tu ra l  language processing,  pa r t i cu-  
larly as it re la tes  to the design and  opera t ion  of auto-  
ma t i c  in format ion  sys tems.  Inc luded  are t echniques  
for organizing, storing, ma tch ing ,  and  re t r ieving s t ruc-  
tured in format ion  on digital  compu te r s ,  as well as pro- 
cedures  useful for the op t imiza t ion  of search effective- 
ness. 

Course A5. Information Organization and 
Retrieval (3-0-3) 

Prerequisite: Course I1. 

Structure of semiformal languages and models for the representa- 
tion of structured information. Aspects of natural language process- 
ing on digital computers. The analysis of information content by 
statistical, syntactic, and logical methods. Search and matching 
techniques. Automatic retrieval systems, question-answering sys- 
tems. Production of secondary outputs. Evaluation of retrieval ef- 
fectiveness. 

~ T h e  object ive of the following course is to s tudy  the  
p rob lems  of handl ing  graphic  informat ion ,  such as line 
drawings,  block d iagrams ,  handwri t ing ,  and  three-di-  
mens iona l  surfaces,  in compute r s .  I n p u t - o u t p u t  and  
represen ta t ion-s to rage  of p ic tures  will be in t roduced  
f rom the hardware  and  software points  of view. The  
course is in tended  to serve bo th  the s tuden t  in te res ted  
in special izing in com pu t e r  graphics  per se and  the 
s tuden t  who seeks to app ly  graphic  techniques  to his 
pa r t i cu la r  comput ing  work. 

Course A6. Computer Graphics (2-2-3) 

Prerequisites: Courses I1, I3 (desirable), and I4 (desirable). 

Display memory, generation of points, vectors, etc. Interactive ver- 
sus passive graphics. Analog storage of images on microfilm, etc. 
Digitizing and digital storage. Pattern recognition by features, syn- 
tax tables, random nets, etc. Data structures and graphics software. 
The mathematics of three-dimensions, projections, and the hidden- 
line problem. "Graphical programs," computer-aided design and in- 
struction, and animated movies. 

~ T h e  following course uses ab s t r ac t  mach ines  as 
models  in the s tudy  of c o m p u t a b i l i t y  and  c o m p u t a -  
t ional  complexi ty .  E m p h a s i s  is p laced on the  mul t i -  
t ape  Tur ing  mach ine  as a su i tab le  model,  bu t  o ther  
models  are also considered.  

~ T h e  following course is i n t ended  for s tuden t s  who art 
in te res ted  in the  app l ica t ion  of in fo rmat ion  t e c h n o l o g y  
in large-scale in fo rmat ion  processing sys tems.  The  t e r m  
" in fo rma t ion  processing s y s t e m "  is used  here to include 
the  hardware ,  software,  procedures ,  and  t e c h n i q u e s  
t h a t  are a s sembled  and  organized to achieve some d e -  
sired objectives.  E x a m p l e s  of such large-scale  informa- ! 
t ion processing sys tems  are bus iness  da t a  processing 
sys tems,  in format ion  s torage and  re t r ieval  s y s t e m s ,  
c o m m a n d  and control  sys tems,  and  c o m p u t e r  centers.  

Course A8. Large-scale Information Processing 
Systems (3-0-3) 

Prerequisites: Course A4, and a course in operations research or op- 
timization theory. 

Organization of' major types of information processing systems. Data 
organization and storage structure techniques. Designing "best" sys- 
tems by organizing files and segmenting problems into computer 
programs to make efificient use of hardware devices. Documentation 
methods and techniques for modifying systems. Use of optimizatioI 
and simulation as design techniques. Communication problem~ 
among individuals involved in system development. 

~ T h e  following course in t roduces  the  s t uden t  to those 
nona r i t hme t i ca l  app l ica t ions  of compu t ing  machine~ 
tha t :  (1) a t t e m p t  to achieve goals considered to require 
h u m a n  m e n t a l  capabi l i t ies  (art if icial  intell igence);  (2) 
model  highly organized in te l lec tual  ac t iv i ty  (simula- 
t ion of cognit ive behavior) ;  and  (3) descr ibe purposeful 
behav ior  of living organisms or a r t i fac ts  (self-organizinG 
systems) .  Courses in this area  are often t a u g h t  with few 
prerequisi tes ,  bu t  by  requir ing some or all of the pre- 
requisi tes  l isted here this  course could be t augh t  a t  
more advanced  level. 

Course A9. Artificial Intelligence and Heuristic 
Programming (3-0-3) 

Prerequisites: Courses [1, A4 (desirable), and M7 (desirable); and 
some knowledge of experimental and theoretical psychology would 
also be useful. 

Definition of heuristic versus algorithmic methods, rationale of heu. 
ristic approach, description of cognitive processes, and approaches t¢ 
mathematical invention. Objectives of work in artificial intelligence, 
simulation of cognitive behavior, and self-organizing systems. Heu- 
ristic programming techniques including the use of list processing 
languages. Survey of examples from representative application areas. 
The mind-brain problem and the nature of intelligence. Class and 
individual projects to illustrate basic concepts. 

160 Communications of tile ACM Volume 1l / Number 3 / March, 1968 



. 

As indicated in the Introduction, there has been con- 
siderable discussion on the desirability of undergradu- 
ate degree programs in computer science. Many who 
favor these programs believe that  an undergraduate 
computer science "major" is as natural today as a major 
in established fields such as mathematics, physics, or 
electrical engineering. Many who oppose these pro- 
grams feel that, although undergraduate courses in 
computer science should be available for support of 
work in other areas, to offer an undergraduate degree 
in computer science may encourage too narrow a spe- 
cialization at the expense of breadth. They point out 
that the lack of such breadth may be a serious handi- 
cap to a s tudent  desiring to do graduate work in com- 
puter science, and they contend that it would be better 
for the student to major in some established discipline 

wh i l e  taking a number of computer science courses as 

I suppor t ing  work. To meet these objections the Com- 
li; mittee has made every effort to present a curriculum 
w h i c h  includes a broad representation of basic concepts 
a n d  an adequate coverage of professional techniques. 

The number of undergraduate degree programs now 
in existence or in the planning stages--approximately 
one third of all Ph.D. granting institutions in the United 
States either have such computer science programs now 

(or expect to have them by 1970 [5]--indicates that a 
discussion of the desirability of such programs is much 
less  relevant than the early development of guidelines 
~ and standards for them. The Committee feels strongly, 
however,  that schools should exercise caution against 
the  premature establishment of undergraduate degree 
programs. The pressures created by large numbers of 
students needing to take courses required for the degree 
could easily result in a general lowering of standards 

e x a c t l y  when it is vital that  such programs be estab- 
l i s h e d  and maintained only with high standards. 
) The variation of undergraduate program require- 
m e n t s  among and within schools dictates that  this 
C o m m i t t e e ' s  recommendations must be very general. 
I t  is fully expected that  each individual school will 

modit~ these recommendations to meet its specific 
circumstances,  but  it is hoped that these modifications 
;)will be expansions of or changes in the emphasis of 
t h e  basic program proposed, rather than reductions in 
quant i ty  or quality. The requirements recommended 
herein have been kept to a minimum in order to allow 
the student to obtain a "liberal education" and to en- 
able individual programs to add additional detailed 

:requirements. Since the liberal education requirements 
o f  each school are already well established, the Com- 

nnittee has not considered making recommendations on 
Such requirements. 

The Committee 's  recommendations for an under- 

11 / N u m b e r  3 / M a r c h ,  1968 

U n d e r g r a d u a t e  P r o g r a m s  

graduate computer science curriculum are stated in 
terms of computer science course work, programming 
experience, mathematics course work, technical elec- 
tives, and possible areas of specialization. Some sug- 
gestions are also given as to how the courses might fit 
chronologically into a semester-by-semester schedule. 

Computer Science Courses. The basic and interme- 
diate course requirements listed below emphasize the 
first two "major subject divisions" namely, "informa- 
tion structures and processes" and "information proc- 
essing systems" described in Section 2 of this report. 
These courses should give the student a firm grounding 
in the fundamentals of computer science: 

The major in computer science should consist of at least 30 
semester hours including the courses: 

B1. Introduction to Computing 

B2. Computers and Programming 

83. Introduction to Discrete Structures 

B4. Numerical Calculus 

I1. Data Structures 

I2. Programming Languages 

[3. Computer Organization 

[4. Systems Programming 

and at least two of the courses: 

I5. Compiler Construction 

16, Switching Theory 

i7. Sequential Machines 

I8. Numerical Analysis I 

19. Numerical Analysis II 

Programming Experience. Developing programming 
skill is by no means the main purpose of an under- 
graduate program in computer science; nevertheless, 
such skill is an important by-product. Therefore such a 
program should insure that  the student attains a rea- 
sonable level of programming competence. This can be 
done in part by including computer work of progressive 
complexity and diversity in the required courses, but it 
is also desirable that each student participate in a 
"true-to-life" programming project. This might be ar- 
ranged through summer employment, a cooperative 
work-study program, part-time employment in com- 
puter centers, special project courses, or some other 
appropriate means. 

Mathematics Courses. The Committee feels that an 
academic program in computer science must be well 
based in mathematics since computer science draws so 
heavily upon mathematical ideas and methods. The 
recommendations for required mathematics courses 
given below should be regarded as minimal: obviously 
additional course work in mathematics would be essen- 
tial for students specializing in numerical applications. 

C o m m u n i c a t i o n s  o f  ! he ACM 16l 



The supporting urorh ~n m~the'matics shoukf co,qsL*t of at M:u<t 
I8 hours inch;ding the ('ours~,s: 

M I Introductory Calculus 

M2 Ma~hematica~ AnaQs~s 

M2 P Probabibv¢ 

M 3  Linear A!gebra 

M4 Mathematical Anabfs~s ~I 
M5 Advanced Multivariate Ca!cuk~s 

M6 A~gebraic Structures 

M7 Probabi!i W and S[at~s~cs 

)Tchn,"ca/ Eb, c t iur s .  Assuming that a typical four- 
>,ear currictflum consists of I24 semester hours, a nun> 
her of technical electives beyond the requirements 
listed above should be available to a student in a con> 
purer science program. Some of these electives might 
be specified by it:he program to develop a particular 
orientation or minor. Because of the temptat ion for the 
student t o  overspecialize, it is suggested t h a t  a limit b e  

placed on the number of computer science electives a 
student is allowed to take---for example, three such 
courses might be permitted. For many studems it wilI 
be desirable to use the remaining technical electives 
to acquire a deeper knowledge of mathematics,  physical 
science, electrical engineering, or some other com- 
puter-related field. 

Students should be carefully advised in the choice of 
their electives. In particutan those preparing for gradu- 
ate school must insure that they will be qualified for 
admission into the program of their choice. Those seek- 
ing a more "professional" education can specialize to 
some extent through the proper choice of electb;es. 

A r e a s  o f  Spee~al iea t ion .  Although undue specializa- 
tion is  not appropriate at the undergraduate level, :he 
technicM electives may be used to orient undergradu- 
ate programs in a number of different directions. Some 
of the possible orientations, along with appropriate 
courses for Section 31 and subject areas {of Section 2! 
from wiaich the optional anci elective courses might be 
taken, are given beiow. 

APPI,IED SYS~fEMS PRO(;RAMMING 
Opt>nat ( our.~ea 

5 Comp~}e~ Cor~str~c~on 

6 Swqc, bhg Tb, eocy 

A2 Advanced Cornc.u~e~ O~gan~zat.~on 
A5 kvf(~rna~oo O~9amza~lon and Rate avai 

A5 Co~'np~e~ Graphics 

E~r,Tt.wes from areas 
]V 8 Combmato~ a~ Ma~be.mat~c:s 
IV '9 Matr~ernat}ca~ L.rsgi¢ 

JV ! ~ ?~fsbab hi? and Stat~'~¢5 
!V 1 2 0 p e  atior~s Aneb/s~s 

([OMPU:TER ORGANIZATION AN[;~ DE,41(;X 
()p~a,n,,:d c~mm,~/s 

~7 5eq~enBa~ Machines 

162 C(m~m~*r~fea~io~ of the A(;M 

A2 A d v a n c e d  Compu~el  O~9m!za~!on  

A4 S y s t e m  S~m,ulat~on 

.5.8 Large sca!e bfformat~on P~ocess.~g Sgst~ m.,,, 

!V 3 Differentia! Equations 

V 2 Base ~.Lectromcs 
V 6 DIgl~al and Pulse Circuits 

V 7 C o d i n g  and ~n~o~!'nat~on The(m,; 

S('H,:NTIFt(" APPLI( ATIONS PR()(;XAMMIN{; 

/8 Numenca} Analyses { 

~9 Numer}ca~ Ana~ys*s H 

A3 Ana}og and Hybrid Computing 

A4 System Simulation 
A5 Mforma~ion Orgamzanon and R e t r e v a l  

A6 Comp*.~te~ G~aphms 

t:;h,,:'tir<,s from (~rva:~ 
~V 3 D~ffefen~at Equations 

~V 70pt~m~zabon 'Theory 

V -4 '['henmOdgnam~cs and S[absttcal Mechamcs 

V 5 f~e~J Theor,¢ 

DATA PRO(?ESS~Nt; A PF'[d(?ATIONS PR()( ;RAM MINt', 

Opth)na! courses 
5 Compdef Cons{ructlon 

~6 S w i t c h i n g  Theory 

#]i'#c~t'#'s [ram <ourw~;< 

A4 System S~muiat~on 

A5 h{o~ma~ion Organization and Ret~eval 
AS Large,scale Mformation Processing Systems 

£{ecg~u 'x from areas 

~V 70pt*r'mzaBon Theory 

1V t I Probabahty and Stat~s{ics 
W 12 Ope~a~ion AnaQs:s 

V 7 Coding an4} ~nfo~ma~on Theory 

S e m e s t e r  Chrono to~3 .  Any institution planning an 
undergraduate program based on the recommendations 
of this report should work out several complete %ur- 
year .curricula to insure that the required courses mesh 
in an orderty manner with electives and with the "gen- 
era1 educat ion" requirements of the institution. This 
will help the school to take into account local circum- 
stances such as having very %w entering freshmen who 
can begin college mathematics  with the calculus. 

Table t gives some example:~ of how a student in c0m- 
purer science might be scheduled fl~r the minimum set 
of coun~es recommended for all ma]or:~,. 

TABLtl i 
.............................................................................................................................................. / 

Freshman /;ir~ M1. Bt t~asir M~lh. Basic Math. 
~v~.nd M2~ B2 5dI, BI Basic 3,h~ h. 

8er.nd M4.. B~ M~L b>~ M2, B~ 
hmi.r F'ir>~ M2Po II M~ B~ M2P, Ba, B,I 

/ 

N~ 



5. M a s t e r ' s  

The recommendations given in this section concern 
undergraduate preparation for graduate study in com- 
puter science, requirements for a Master of' Science de- 
gree in computer science, and some possible areas of 
concentration for students who are at the master 's de- 
gree level. 

Undergraduate Preparation. The r e c o m m e n d e d  
preparation for graduate study in computer science 
consists of three parts as listed below. The course 
work which would provide this background is indi- 
cated in parentheses. 

a. Knowledge of computer science including algorith- 
mic processes, programming, computer organization, 
discrete structures, and numerical mathematics.  
(Courses B1, B2, B3, and B4 or I8 of Section 3.) 

b. Knowledge of mathematics,  including the calculus 
and linear algebra, and knowledge of probability and 
statistics. (Courses M1, M2, M3, M4, M2P, M7 of 
CUPM.) 

c. Additional knowledge of some field such as com- 
puter science, mathematics,  electrical engineering, 
physical science, biological science, linguistics, library 
science, or management  science which will contribute 
to the student 's  graduate study in computer science. 
(Four appropriate courses on an intermediate level.) 

A student with a bachelor's degree in computer sci- 
ence, such as recommended in Section 4, can have 
taken all these prerequisites as basic and supporting 
courses and can also have taken further work which 
overlaps with some of the subject matter  to be treated 
at the master 's level. Although such a student will be 
able to take more advanced graduate work in computer 
science to satisfy his master 's requirements, he may 
need to take more supporting work than a student 
whose undergraduate degree was in some other field. 
A student with an undergraduate degree in mathe- 
matics, physical science, or electrical engineering can 
easily qualify for such a program if he has taken ade- 
quate supporting courses in computer science. Other 
applicants should have no more than a few deficiencies 
in order to qualify. 

In the near future many of the potential students, be- 
cause of having completed the i r  undergraduate work 
some time ago, will not have had the opportunity to 
meet these requirements. Liberal policies should there- 
fore be established so that  promising students can make 
up deficiencies. 

Degree Requirements. Each student 's program of 
study for the master 's degree should have both breadth 
and depth. In order to obtain breadth, the student 
should take course work from each of the three subject 
divisions of computer science described in Section 2. 
To obtain depth, he should develop an area of concen- 

Volume !1 / Number  3 / March, 1968 

D e g r e e  P r o g r a m s  

tration in which he would write a master's thesis or 
complete a master's project (if required). 

The master's degree program in computer science should con- 
sist of at least nine courses. Normally at least two courses-- 
each in a different subject area--should be taken from each of 
the following subject divisions of computer science: 

I. Information Structures and Processes 
I1. Information Processing Systems 
II1. Methodologies 

Su~cient  other courses in computer science or related areas 
should be taken to bring the student to the forefront of some 
area of computer science. 

In order that the student may perform in his required 
course work at the graduate level he must acquire a 
knowledge of related areas, such as mathematics and 
the physical sciences, either as part of his undergradu- 
ate preparation or as part of his graduate program. 
Computer science as a discipline requires an under- 
standing of mathematical methods and an ability to 
use mathematical techniques beyond the specific un- 
dergraduate preparation in mathematics recommended 
above. Hence, a student who does not have a "strong" 
mathematics background should take either further 
courses in mathematics, or he should take computer 
science courses which contain a high mathematical 
content. 

If Courses I1, I2, I3, and I4 of Section 3 are taught 
at a sufficiently high level, they can be used to satisfy 
the "breadth" requirements for the first two subject 
divisions listed above. In any case, the student who has 
taken such courses as part of his undergraduate pro- 
gram could take more advanced courses in these areas 
so that the requirement for two courses in each subject 
division might be relaxed somewhat. This might permit 
such a student to take more supporting work outside 
computer science. 

Areas of Concentration. The "depth" requirement 
will often involve courses from fields other than com- 
puter science, so that a student may have to take addi- 
tional courses in these fields just  to meet prerequisites 
unless he has anticipated this need in his undergradu- 
ate preparation. In any event, the particular courses 
a student selects from each of the three subject divi- 
sions of computer science should be coordinated with 
his area of concentration. To illustrate how this might 
be done, six possible concentrations are shown below 
together with lists of the subject areas (of Section 2) 
from which appropriate courses might be selected for 
each of the concentrations. The characterization of 
courses in terms of subject areas instead of explicit con- 
tent  effectively gives a list of suggested topics which 
can be drawn upon in designing master's level courses 
suited to the needs of individual institutions. 

Communica t ions  of the ACM 163 



THEORETICAL COMPUTER SCIENCE 

1.1 Data Structures 

1.2 Programming Languages 

I 3 Models of Computation 

111.3 Symbol Manipulation 

111,8 Artificial Intelligence 

IV,8 Combinatorial Analysis 

IV,9 Mathematical Logic 

V.7 Coding and Information Theory 

APPLIED SOFTWARE 

1.1 Data Structures 

1.2 Programming Languages 

I1.1 Computer Design and Organization 

11.2 Translators and Interpreters 

11.3 Computer and Operating Systems 

11t.3 Symbol Manipulation 

111.6 Simulation 

IV.7 Optimization Theory 

IV.9 Mathematical Logic 

APPLIED HARDWARE 

1.1 Data Structures 

1.3 Models of Computation 

I1.1 Computer Design and Organization 

11.3 Computer and Operating Systems 

111.5 Computer Graphics 

IV. 7 Optimization Theory 

IV. 9 Mathematical Logic 

V.6 Digital and Pulse Circuits 

V.7 Coding and Information Theory 

NUMERICAL MATHEMATICS 

1.1 Data Structures 

1,2 Programming Languages 

I1.1 Computer Design and Organization 

11.3 Computer and Operating Systems 

III1 Numerical Mathematics 

111.6 Simulation 

IV.5 Theoretical Numerical Analysis 

IV.6 Methods of Applied Mathematics 

IV.7 Optimization Theory 

INSTRUMENTATION 

1.1 Data Structures 

1.2 Programming Languages 

I1.1 Computer Design and Organization 

11.4 Special Purpose Systems 

11t.6 Simulation 

1119 Process Control 

IV.6 Methods of Applied Mathematics 

IV.7 Optimization Theory 

V.8 Communication and Control Theory 

INFORMATION SYSTEMS 

1.1 Data Structures 

t.2 Programming Languages 

I1.1 Computer Design and Organization 

11.3 Computer and Operating Systems 

111.2 Data Processing and File Management 

111.4 Text Processing 

III, 7 Information Retrieval 

IV.7 Optimization Theory 

IV.9 Mathematical Logic 

The requirement of a master 's thesis or other project 
has been left unspecified since general institutional re- 
quirements will usually determine this. It is s t rongly  
recommended, however, that  a master 's program in 
computer science contain some formal provision for in- 
suring that the student gains or has gained project ex- ;i 
perience in computer applications. This could be e f -  
fected by requiring that  students carry out either i 
individually or cooperatively a substantial assigned t a s k i  
involving analysis and programming, or better, t h a t  
students be involved in an actual project on campus 
or in conjunction with other employment.  

This proposed program embodies sufficient f lex ib i l i ty  
to fulfill the requirements of either an " a c a d e m i c "  
degree obtained in preparation for further g r a d u a t e  
study or a terminal "professional" degree. Until c leare r :  
standards both for computer science research and t h e  
computing profession have emerged, it seems unwise to  
a t tempt  to distinguish more definitely between t h e s e  
two aspects of master's degree programs. 

6. D o c t o r a l  

• Academic programs at the doctoral level reflect the 
specific interests of the faculty and, hence, vary from 
university to university. Therefore, the Committee 
cannot expect to give recommendations for such doc- 
toral programs in as great a detail as has been done for 
the undergraduate and master's degree programs. The 
large number of institutions planning such programs 
and the variety of auspices under which they are being 
sponsored, however, suggest that  a need exists for 
guidelines as to what constitutes a "good" doctoral 
program. While recommendations on doctoral programs 

164 Communica t ions  of the ACM 

P og r r a m s  

i 

will not be given at this time, the problem of how t o  
obtain such guidelines has been of considerable i n t e r :  
est to the Committee. 

One possible source of such guidelines is the ex i s t ing  
doctoral programs. A description of the program a t  
Stanford University [15] has already been pub l i shed  
in Communications of the ACM and descriptions o f  
many other programs are available from the universi~ 
ties concerned. Information based on a number of s u c h  
programs is contained in the report of the June 
Stony Brook Conference [11]. This report also con ta ins  

Volume 11 / Number  3 / March, 



a list of' thesis topics currently being pursued or re- 
cently completed. In the future the Curriculum Com- 
mittee hopes to encourage wide dissemination of the 
descriptions of existing programs and research topics. 
Perhaps it can take an active role in coordinating the 
interchange of such information. 

In 1966 Professor Thomas Hull was asked by ACM 
to examine the question of doctoral programs in com- 
puter science. After discussion with the members of 
this Committee and with many other interested per- 
sons, Professor Hull decided to solicit a series of articles 
on the research and teaching areas which might be in- 
volved in doctoral programs. Each article is to be 
written by an expert in the particular subject area, 
such as programming languages, systems programming, 
computer organization, numerical mathematics, auto- 
mata theory, large systems, and artificial intelligence. 
Each article is to at tempt to consider all aspects of the 
subject area which might be helpful to those develop- 

ing a graduate program, including as many of the fol- 
lowing topics as possible: 

a. Definition of the subject area, possibly in terms of 
an annotated bibliography. 

b. Prerequisites for work in the area at the doctoral 
level. 

c. Outlines of appropriate graduate courses in the 
area. 

d. Examples of questions for qualifying examinations 
in the area. 

e. Indication of suitable thesis topics and promising 
directions for research in the area. 

f: The extent to which the subject area ought to be 
required of all doctoral students in computer 
science. 

These articles are scheduled for publication in Com- 
munications of the ACM and it is hoped that  they will 

stimulate further articles on doctoral programs. 

7. Service Courses, Minors, and Continuing Education 

Though it is now generally recognized that  a signifi- 
cant portion of our undergraduate students needs some 
knowledge of computing, the amount and type of com- 
puting knowledge necessary for particular areas of 
study are still subject to considerable discussion. The 
Pierce Report [7] estimates that  about 75 percent of 
all college undergraduates are enrolled in curricula 
where some computer training would be useful. This 
estimate, based on figures compiled by the US Office 
of Education, involves dividing the undergraduate stu- 
dent population into three groups. The first group, 
about 35 percent of all undergraduates, consists of 
those in scientific or professional programs having a 
substantial quantitative content (e.g. mathematics, 
physics, and engineering). At least some introductory 
knowledge of computing is already considered highly 
desirable for almost all of these students. The second 
group, some 40 percent, is made up of those majoring 
in fields where an understanding of the fundamentals 
of computing is steadily becoming more valuable (e.g. 
business, behavioral~ sciences, education, medicine, 
and library science). Many programs in these areas are 
already requiring courses in computing, and most are 
expected to add such requirements in the future. The 
third group, roughly 25 percent, comprises those un- 
dergraduates who are majoring in areas which do not 
necessarily depend on the use of computers (e.g. music, 
drama, literature, foreign languages, liberal arts, and 
fine arts). There are many persons who maintain that  
even these students could benefit from a course which 
would give them an appreciation of this modern tech- 
nology and its influence on the structure of our society. 

The extent and nature of the courses on computing 

Volume n / N u m b e r 3  / March, 1968 

needed for these three groups of students should be 
given further careful study, but the existence of a sub- 
stantial need for service courses in computer science 
seems undeniable. Students in the more quantitative 
fields are usually well-equipped to take the basic 
courses designed for the computer science major. In 
particular, Course B1 should serve as an excellent in- 
troductory course for these students and, depending 
upon their interests, Course B2 or B4 might serve as a 
second course. When these students develop a greater 
interest in computing, they should normally be able to 
select an appropriate "minor" program of study from 
the courses described in Section 3. In developing a 
minor program careful consideration should be given 
to the comparative values of each course in the de- 
velopment of the individual student. 

Some special provisions appear to be necessary for 
students in the second and third groups described 
above. A special version of Course B1 which would 
place more emphasis on text processing and other 
nonnumeric applications might be more appropriate 
for students in the second group. However, it is im- 
portant that this course provides adequate prepara- 
tion for such courses as B2 and B3, since many of these 
students might be expected to take further courses in 
computer science. It may also be desirable to develop 
courses giving primary emphasis to the economic, polit- 
ical, sociological, and other implications of the growing 
use of computer technology. Such courses would not be 
considered substitutes for basic technical courses such 
as B1, but they could serve the needs of the third 
group of students. 

Professional programs at all levels offer limited op- 

Commttnicat ions of tile ACM 165 



portunity for courses outside their highly structured 
curricula, and they also present special problems. In 
some cases it may be necessary to develop special 
courses for students in such programs or to integrate 
work on computing into existing courses. Those prepar- 
ing for graduate professional programs will often find it 
desirable to include some of the basic computer science 
courses in their undergraduate work. 

The responsibility for developing and conducting the 
basic service courses in computer science should be con- 
centrated within the academic structure and combined 
with the operation of educational programs in computer 
science. By properly aggregating students from similar 
fields, those responsible for planning academic courses 
can make them more generally applicable and broadly 
directed. Under this arrangement teachers can be used 
more effectively and course content can more easily be 
kept current with the rapidly moving developments in 
the field. Also, students who find a need or a desire to 
delve further into computer science are more likely to 
have the necessary background to take advanced 

courses. On the other hand, it must be recognized that 
some departments will have many situations where 
special applications of the computer can best be intro- 
duced in their own courses. Certainly those responsible 
for the basic computer science service courses must be 
sensitive to the needs of the students for whom these 
courses are intended. 

Finally, the need for continuing education in com- 
puter science must be recognized. Much of the course 
material discussed in this report did not exist ten or 
fifteen years ago, and practically none of this material 
was available to students until the last few years. Any- 
one who graduated from college in the early 1960's and 
whose "major" field of s tudy is related to computing is 
already out-of-date unless he has made a determined 
effort to continue his education. Those responsible for 
academic programs in computer science and those 
agencies which help to direct and support continuing 
education should be especially alert to these needs in 
this unusually dynamic and important field. 

o 

In educational institutions careful consideration 
should be given to the problems of implementing a 
computer-related course of s tudy- -be  it a few introduc- 
tory or service courses, an undergraduate degree pro- 
gram, or a graduate degree program. Some of these 
problems involve organization, staff requirements, and 
physical facilities (including computing services). Al- 
though individual ways of providing a favorable en- 
vironment for computer science will be found in each 
school, the following discussion is intended to call at- 
tention to the extent of some of these problems. 

Organization for Academic Programs. It should be 
realized that the demands for education in computer 
science are strong. If some suitable place in the institu- 
tional structure is not provided for courses and pro- 
grams in computer science to be developed, they will 
spring up within a number of existing departments and 
a possible diffusion of effort will result as has been ex- 
perienced with statistics in many universities. 

If degree programs in computer science are to be of- 
fered, it is desirable to establish an independent aca- 
demic unit to administer them. Such a unit is needed 
to provide the appropriate mechanisms for faculty ap- 
pointments and promotions, for attention to continuing 
curriculum development, and for the allocation of re- 
sources such as personnel, budget, space, and equip- 
ment. This academic unit should also be prepared to 
provide general service courses and to cooperate in 
developing computer-oriented course work in other 
departments and professional schools. 

Many universities have established departments of 
cqmputer science as part of their colleges of arts and 

I m p l e m e n t a t i o n  

sciences, and some have established divisions of mathe- 
matical sciences, which include such departments  as 
mathematics, applied mathematics,  statistics, and com- 
puter science. Other institutions have located computer 
science departments in colleges of engineering and ap- 
plied science. Academic units in computer science have 
also been affiliated with a graduate school, associated 
with more than one college, or even established inde- 
pendent of any college in a university. 

The organizational problems for this new field are 
serious, and their solution will inevitably require new 
budget commitments from a university. However, fail- 
ure to come to grips with the problem will probably 
prove more costly in the long run; duplicated courses 
and programs of diluted quality may result, and a ma- 
jor upheaval may eventually be required for reorgani- 
zation. 

Staff Requirements. Degree programs in computer 
science require a faculty dedicated to this discipline-- 
that  is, individuals who consider themselves computer 
scientists regardless of their previous academic training. 
Although graduate programs in computer science are 
now producing a limited number of potential faculty 
members, the demand for such people in industry and 
government and the competition for faculty among uni- 
versities are quite intense. Hence educational institu- 
tions will have to obtain most of their computer science 
faculty from other sources--at least for the immediate 
future. Many faculty members in other departments 
of our universities have become involved with comput- 
ing and have contributed to its development to the 
point that they are anxious to become part of a corn- 

166 Communications of the ACM Volume II / Number 3 / Marcll, 1968 



puter science program. Within industry and govern- 
mere there are also people with tile necessary academic 
credentials who are willing to teach the technology 
they have helped develop. Thus, extensive experience 
and academic work in computer science, accompanied 
by academic credentials in a related area such as 
mathematics, electrical engineering, or other appro- 
priate disciplines, can serve as suitable qualifications 
for staff appointments in a computer science program. 
Joint appointments with other academic departments 
or with the computing center can help fill some of the 
need, but it is desirable that  a substantial portion of 
the faculty be fully committed to computer science. 
Moreover, there is some critical size of faculty--perhaps 
the equivalent of five full-time positions--which is 
needed to provide a reasonable coverage of the areas 
of computer science discussed in Section 2. 

Since relatively few good textbooks are available in 
the computer sciences, the computer science faculty 
will need to devote an unusually large part of its time 
to searching the literature and developing instructional 
materials. This fact should be taken into consideration 
in determining teaching loads and staff assignments. 

Physical Facilities. Insofar as physical facilities are 
concerned, computer science should generally be in- 
cluded among the laboratory sciences. Individual fac- 
ulty members may need extra space to set up and use 
equipment, to file cards and voluminous computer 
listings, and otherwise to carry out their teaching and 
research. In addition to normal library facilities, special 
collections of material, such as research reports, com- 
puter manuals, and computer programs, must be ob- 
tained and facilities made available for their proper 
storage and effective use. Space must also be provided 
for keypunches, remote consoles to computers, and any 
other special equipment needed for education and/or 
research. Laboratory-type classrooms must be avail- 
able to allow students, either as individuals or as 
groups, to spread out and study computer listings. 

It is no more conceivable that  computer science 
courses--let alone degree programs--can exist without 
a computer available to students than that  chemistry 
and physics offerings can exist without the associated 
laboratory equipment. Degree programs require regular 
access to at least a medium-sized computer system of 
sufficient complexity in configuration to require the 
use of an operating system. The total operating costs 
of such systems are at least $20,000 per month. In terms 
of hours per month, the machine requirements of com- 
puter science degree programs will vary according to 
the number of students enrolled, the speed of the 
computer and the efficiency of its software, and the 
philosophy of the instructors. It is entirely possible 
that an undergraduate degree program might require 
as much as four hours of computing on a medium-sized 

computer per class day. 

Volume Ii / Number 3 / March, 1968 

Space for data and program preparation and program 
checking must be provided, and the logistics of han- 
dling hundreds and possibly thousands of student pro- 
grams per day must be worked out so that each student 
has frequent access to the computer with a minimum 
of waiting and confusion. Although many of these same 
facilities must be provided for students and faculty 
other than those in computer science, the computer 
science program is particularly dependent on these 
services. It is simply false economy to hamper the use 
of expensive computing equipment by crowding it into 
unsuitable space or in some other way making it inac- 
cessible. 

The study and development of systems programs 
will require special forms of access to at least medium- 
scale computing systems. This will place an additional 
burden on the computer center and may possibly re- 
quire the acquisition of completely separate equip- 
ment for educational and research purposes. In ad- 
vanced programs it is likely that  other specialized 
equipment will be necessary to handle such areas as 
computer graphics, numeric control of machines, proc- 
ess control, simulation, information retrieval systems, 
and computer-assisted instruction. 

Although assistance in financing computer services 
and equipment can be obtained from industry and from 
federal and state governments, the Committee feels 
that universities should provide for the costs of equip- 
ment and services for computer science programs just 
as they provide for costs of other laboratory sciences. 
Based on its knowledge of costs at a number of schools 
the Committee estimates that  computer batch proc- 
essing of student jobs for elementary courses presently 
costs an average of about $30 per semester hour per 
student, whereas the Pierce Report [7] estimates that 
it costs colleges about $95 per chemistry student per 
year for a single chemistry laboratory course. Although 
computer costs are decreasing relative to capacity, it is 
expected that  students will be able to use more com- 
puter time effectively in the future as computers be- 
come more accessible through the use of such tech- 
niques as time-sharing. On the basis of these estimates 
and expectations, future computer costs for academic 
programs may well approach faculty salary costs. 

Relation of the Academic Program to the Computing 
Center. As indicated above, the demands which an 
academic program in computer science places on a uni- 
versity computing center are more than routine. Com- 
puter and programming systems must be expanded and 
modified to meet the growing and varied needs of these 
programs as well as the needs of the other users. The 
service function of a computer center must therefore 
be enhanced by an activity which might be described 
as "applied computer science." In a complementary 
way, it is appropriate for a computer science faculty to 
be deeply involved in the application of computers, 

Communications of the ACM 167 



p a r t i c u l a r l y  in  t h e  d e v e l o p m e n t  of  p r o g r a m m i n g  sys-  

t e m s .  F o r  t h e s e  r e a s o n s ,  t h e  a c t i v i t i e s  of  a c o m p u t e r  
c e n t e r  a n d  a c o m p u t e r  s c i ence  d e p a r t m e n t  s h o u l d  be  

c lose ly  c o o r d i n a t e d .  T h e  s h a r i n g  of  s t a f f  t h r o u g h  j o i n t  

a p p o i n t m e n t s  he lps  f a c i l i t a t e  s u c h  c o o p e r a t i o n ,  a n d  i t  

is  a l m o s t  n e c e s s a r y  to  p r o v i d e  s u c h  a c a d e m i c  a p p o i n t -  

m e n t s  in  o r d e r  to  a t t r a c t  a n d  r e t a i n  c e r t a i n  e s s e n t i a l  

c o m p u t e r  c e n t e r  p e r s o n n e l .  
I t  s h o u l d  b e  r e a l i z e d ,  however ,  t h a t  t he  b a s i c  ph i -  

l o s o p h i e s  of p r o v i d i n g  s e rv i ce s  a n d  of p u r s u i n g  a c a -  

d e m i c  e n d s  d i f fe r  to  such  a n  e x t e n t  t h a t  conf l i c t s  for 

a t t e n t i o n  m a y  occur .  At  one  e x t r e m e ,  the  r e s e a r c h  of a 

c o m p u t e r  sc i ence  f a c u l t y  m a y  so d o m i n a t e  the  ac t iv i t i e s  

of a c o m p u t e r  c e n t e r  t h a t  i t s  s e rv i ce  to t h e  a c a d e m i c  
c o m m u n i t y  d e t e r i o r a t e s .  At  the  o t h e r  e x t r e m e ,  the 

r o u t i n e  se rv ice  d e m a n d s  of  a c o m p u t e r  center '  m a y  in- 
h i b i t  t he  f a c u l t y ' s  a b i l i t y  to  do t h e i r  own r e s e a r c h ,  or 

the  se rv ice  o r i e n t a t i o n  of a c e n t e r  m a y  c a u s e  t h e  edu- 
c a t i o n a l  p r o g r a m  to c ons i s t  of' m e r e  t r a i n i n g  in  tech-  ] 

n i q u e s  h a v i n g  on ly  t r a n s i e n t  v a l u e .  C o n s i d e r a b l e  and  i 

c o n s t a n t  ca re  m u s t  be  t a k e n  to m a i n t a i n  a ba l ance  

b e t w e e n  t h e s e  e x t r e m e s .  
i 

1 
REFERENCES 

1. Association for Computing Machinery, Curriculum Committee on 
Computer Science. An undergraduate program in computer 
science--preliminary recommendations. Comm. ACM 8, 9 
(Sept. 1965), 543-552. 

2. NEWELL A., P~RLIS, A. J., AND SIMON, H.A. Computer science. 
(Letter to the Editor). Science 157, 3795 (22 Sept. 1967), 1373- 
1374. 

3. University of Chicago. Graduate programs in the divisions, an- 
nouncements 1967-1968. U. of Chicago, Chicago, pp. 167-169. 

4. GORN, S. The computer and intormation sciences: a new basic 
discipline. SIAM Review 5, 2 (Apr. 1963), 150-155. 

5. HAMBLEN, J . W .  Computers in higher education: expenditures, 
sources of funds, and utilization for research and instruction 
1964-65, with projections for 1968-69. (A report on a survey 
supported by NSF). Southern Regional Education Board, At- 
lanta, Ga,  1967. 

6. ROSSER, J. B., ET AL. Digital computer needs in universities and 
colleges. Publ. 1233, National Academy of Sciences-National 
Research Council, Washington, D. C., 1966. 

7. President's Science Advisory Committee. Computers in higher 
education. The White House, Washington, D. C., Feb. 1967. 

8. Mathematical Association of America, Committee on the Under- 
graduate Program in Computer Science (CUPM). Recom- 
mendations on the undergraduate mathematics program for 
work in computing. CUPM, Berkeley, Calif., May 1964. 

9. Commission on Engineering Education, COSINE Committee. 
Computer sciences in electrical engineering. Commission in 
Engineering Education, Washington, D. C., Sept. 1967. 

10. British Computer Society, Education Committee. Annual edu- 
cation review. Comput. Bull. 11, 1 (June 1967), 3--73. 

11. FINERMAN, A. (Ed.) University Education in Computing Science. 
(Proceedings of the Graduate Academic Conlerence in Com- 
puting Science, Stony Brook, New York, June 5-8, 1967) ACM 
Monograph, Academic Press, New York, 1968. 

12. Mathematical Association of America, Committee on the Under- 
graduate Program in Mathematics (CUPM). A general cur- 
riculum in mathematics for colleges. CUPM, Berkeley, Calif., 
1965. 

13. - - .  Recommendations in the undergraduate mathematics pro- 
gram fbr engineers and physicists. CUPM, Berkeley, Calif., 
t967. 

14. - - .  A curriculum in applied mathematics. CUPM, Berkeley, 
Calif., 1966. 

15. FORSYTHE, G.E.  A university's education program in computer 
science. Comm. ACM lO, 1 (Jan. 1967), 3-11. 

168 C o m m u n i c a t i o n s  of  the  ACM Volume 11 / Number  3 / March,  196i 



Acknowledgments 

The ff)llowing people have served as consultants 
to the Committee on one or more occasions or have 
given considerable other assistance to our work. 

Richard V. Andree, University of Oklahoma 
Robert I,. Ashenhurst, University of Chicago 
Bruce H. Barnes, Pennsylvania State University 
Robert S. Barton, University of Utah 
J. Richard Buchi, Purdue University 
Harry Cantrelt, General Electric Company 
Mary D'Imperio, Department of Defense 
Arthur Evans, Massachusetts Institute of Technology 
David C. Evans, University of Utah 
Nicholas V. Findler, State University of New York at Buffalo 
Patrick C. Fischer, University of British Columbia 
George E. Forsythe, Stanford University 
Bernard A. Galler, University of Michigan 
Saul Gorn, University of Pennsylvania 
Preston C. Hammer, Pennsylvania State University 
Richard W. Hamming, Bell Telephone Laboratories 
Harry D. Huskey, University of' California at Berkeley 
Peter Z. Ingerman, Radio Corporation of America 
Donald E. Knuth, California Institute of Technology 
Robert R. Korfhage, Purdue University 
Donald J. Laird, Pennsylvania State University 
George E. Lindamood, University of Maryland 
William C. Lynch, Case Institute of Technology 
M. Douglas McIlroy, Bell Telephone Laboratories 
Robert McNaughton, Rensselaer Polytechnic Institute 
Michel Melkanoff, University of California at Los Angeles 
William F. Miller, Stanford University 
Anthony G. Oettinger, Harvard University 
Elliott I. Organick, University of Houston 
Robert H. Owens, University of Virginia 
Charles P. Reed, Jr., Georgia Institute of Technology 
Saul Rosen, Purdue University 
Daniel Teicbroew, Case Institute of Technology 
Andries van Dam, Brown University 
Robert J. Walker, Cornell University 
Peter Wegner, Cornell University 

Written comments on the Committee's work, 
contributions to course outlines, and other as- 
sistance have been rendered by the following: 

Bruce W. Arden, University of Michigan 
John E. Bakken, Midwest Oil Corporation 
Larry L. Bell, Auburn University 
Robert D. Brennan, International Business Machines Corp. 
Yaohan Chu, University of Maryland 
Charles H. Davidson, University of Wisconsin 
Harold P. Edmundson, University of Maryland 
Charles W. Gear, University of Illinois 
Robert T. Gregory, University of Texas 
Keith Hastings, University of Toronto 
Carl F. Kossack, University of Georgia 
Ralph E. Lee, University of Missouri at Rolla 
George Mealy, Massachusetts Institute of Technology 
Harlan D. Mills, International Business Machines Corp. 
Jack Minker, University of Maryland and Auerbach Corp. 
Jack Noland, General Electric Company 
James C. Owings, Jr., University of Maryland 
David L. Parnas, Carnegie-Mellon University 
Charles R. Pearson, J. P. Stevens and Co. 
Tad Pinkerton, University of Michigan 
Roland L. Porter, Los Angeles, California 
Anthony Ralston, State University of New York at Buffalo 
Roy F. Reeves, Ohio State University" 
John R. Rice, Purdue University 
Gerard Salton, Cornell University 
Gordon Sherman, University of Tennessee 
Vladimir Slamecka, Georgia Institute of Technology 
Joseph F. Traub, Bell Telephone Laboratories 

Numerous other people have contributed to 
the work of the Committee through informal dis- 
cussions and other means. The Committee is 
grateful for all of the assistance it has received 
and especially for the cooperative spirit in which 
it has been given. 

olume ] 1 / Number  3 / March, 1968 Communica t ions  of tile ACM 169 



A p p e n d i x .  C o u r s e  O u t l i n e s  a n d  B i b l i o g r a p h i e s  

For each of the twenty-two courses described in Section 3, this Appendix contains a brief discus- 
sion of the approach to teaching the course, a detailed outline of the content of the course, and a 
bibliography listing material which should be useful to the teacher and/or the student  in the 
course. The amount  of attention which might be devoted to the various topics in the content of 
some of the courses is indicated by percentage or by number of lectures. Whenever possible, each 
bibliographic entry is followed by a reference to its review in Computing Reviews. The format used 
for these references is CR-xyvi-n, where xy indicates the year of the review, v the volume number, 
i the issue number, and n the number of the review itself. Most of the bibliographic entries are 
followed by a brief annotation which is intended to indicate the way in which the item would be 
useful and perhaps to clarify the subject of the item: In some cases the title is su~c ien t  for this 
purpose, and no annotation is given. In other cases the items are simply keyed in various ways to 
the sections of the content to which they apply. Although an effort has been made to cite a wide 
variety of texts and reference materials for each-course, space and other considerations have pre- 
vented the listing of all books and papers which might bear on the topics treated. 

! 

ii il 

I 
Course B1. Introduction to Computing (2-2-3) 

APPROACH 

This first course in computing concentrates on the solution of 
computational problems through the introduction and use of an 
algorithmic language. A single such language should be used for 
most of the course so that the students may master it well enough 
to attack substantial problems. It may be desirable, however, to use 
a simple second language of quite different character for a problem 
or two in order to demonstrate the wide diversity of the computer 
languages available. Because of its elegance and novelty, SNOBOL 
can be used quite effectively for this purpose. In any case, it is essen- 
tial that the student be aware that the computers and languages he 
is learning about are only particular instances of a widespread 
species. 

The notion of an algorithm should be stressed throughout the 
course and clearly distinguished from that of a program. The lan- 
guage structures should be carefully motivated and precisely de- 
fined using one or more of the formal techniques available. Every 
effort should be made to develop the student's ability to analyze 
complex problems and formulate algorithms for their solution. Nu- 
merous problems should be assigned for computer solution, begin- 
ning early in the course with several small projects to aid the student 
in learning to program, and should include at least one major project, 
possibly of the student's own choosing. Careful verification of pro- 
gram operation and clear program documentation should be em- 
phasized. 

CONTENT 

This outline reflects an order in which the material might be pre- 
sented; however, the order of presentation will be governed by the 
choice of languages and texts as well as individual preferences. In 
particular, the treatment of some of the topics listed below might 
be distributed throughout the course. Although not specifically 
listed in the following outline, programming and computer projects 
should constitute an important part of the content of this course. 

1. Algorithms, Programs, and Computers. The concept and prop- 
erties of algorithms. Flowcharts of algorithms and the need for pre- 
cise languages to express algorithms. The concept of a program, ex- 
amples of simple programs, and description of how computers 
execute programs. Programming languages including the description 
of their syntax and semantics. (10%) 

2. Basic Programming. Constants, identifiers, variables, sub- 
scripts, operations, functions, and expressions. Declarations, substi- 

tution statements, input-output statements, conditional statements, 
iteration statements, and complete programs. (10%) 

3. Program Structure. Procedures, functions, subroutine calling, 
and formal-actual parameter association. Statement grouping, nested 
structure of expressions and statements, local versus global variables, 
run-time representation, and storage allocation. Common data, seg- 
menting, and other structural features. (10%) 

4. Programming and Computing Systems. Compilers, libraries, 
loaders, system programs, operating systems, and other information 
necessary for the student to interact with the computer being used. 
(5%) 

5. Debugging and Verification of Programs. Error conditions and 
messages, techniques of debugging, selection of test data, checking of 
computer output, and programming to guard against errors in data. 
(5%) 

6. Data Representation. Systems of enumeration and binary 
codes. Representation of characters, fixed and floating-point num- 
bers, vectors, strings, tables, matrices, arrays, and other data struc- 
tures. (10%) 

7. Other Programming Topics. Formatted input and output. Ac- 
curacy, truncation, and round*off errors. Considerations of efficiency. 
Other features of language(s) being considered. (10%) 

8. Organization and Characteristics of Computers. Internal or- 
ganization including input-output, memory-storage, processing and 
control. Registers, arithmetic, instruction codes, execution of instruc- 
tion, addressing, and flow of control. Speed, cost and characteristics 
of various operations and components. (10%) 

9. Analysis of Numerical and Nonnumerical Problems. Appli- 
cations of algorithm development and programming to the solution 
of a variety of problems (distributed throughout the course). (15%) 

10. Survey of Computers, Languages, Systems, and Applications. 
The historical development of computers, languages, and systems 
including recent novel applications of computers, and new develop- 
ments in the computing field. (10%) 

11. Examinations. (5%) 

ANNOTATED BIBLIOGRAPHY 

In addition to the materials listed here, there are numerous books 
and manuals on specific computer languages which would be appro- 
priate as part of the textual material for this course. Very few books, 
however, place sufficient emphasis on algorithms and provide the 
general introductory material proposed for this course. 

1. ARDEN, B. W. An Introduction to Digital Computing. Addison- 
Wesley, Reading, Mass., 1963, 389 pp. CR-6345-4551. 

170 C o m m u n i c a t i o n s  of  the  ACM Volume 11 / Number  3 / March, 1968 



This text uses MAD and emphasizes the solution of numerical 
problems, although other types of problems are discussed. Nu- 
merous examples and exercises. 

2. FORTE, A, SNOBOL3 Primer. M.I.T. Press, Cambridge, Mass,, 
1967, 107 pp. 
An elementary exposition of SNOBOI,3 which might well be used 
to introduce a "second" language. Many exercises and examples. 
(SsoaoIA is now becoming available.) 

3. GALLER, B. A. The Language of Computers. McGraw-Hill, 
New York, 1962, 244 pp. CR-6341-3574. 
Emphasizes "discovering" the structure of algorithms needed 
for the solution of a varied set of problems. The computer lan- 
guage features necessary to express these algorithms are care- 
fully motivated. The language introduced is primarily based on 
MaD, but FoawaaN and At,col, are also discussed. 

4. GRUEN~ERC,~R, F. The teaching of computing (Guest editorial). 
Comm. ACM 8, 6 (June 1965), 348 and 410. CR-6565-8074. 
Conveys eloquently the philosophy which should be used in 
developing and teaching an introductory computing course. 

5. GRUENBERGER, F. AND JAFFRA¥, G. Problems for Computer 
Solution. Wiley, New York, 1965, 401 pp. CR-6671-8757. 
Contains a collection of problems appropriate for computer so- 
lution by students. Student is guided into the analysis of the 
problems and the development of good computational solutions, 
but actual computer programs ibr the solutions are not given. 

6. HULL, T. E. Introduction to Computing. Prentice-Hall, Engle- 
wood Cliffs, N. J., 1966, 212 pp. 
Text on fundamentals of algorithms, basic features of stored- 
program computers, and techniques involved in implementing 
algorithms on computers. Presents a complete description of 
FORTRAN IV with examples of numerical methods, nonnumerical 
applications, and simulations. Numerous exercises. 

7. M~covlwz, A. B. AND SCltWEm'I~, E. J. An Introduction to 
Algorithmic Methods Using the MAD Language. Macmillan, 
New York, 1966, 433 pp. CR-6781-11,199. 
Emphasizes algorithms and their expression as programs, char- 
acteristics of computers and computer systems, formal definition 
of computer languages, and accuracy and efficiency of programs. 
Numerous examples and exercises. 

8. PERUS, A.J. Programming for digital computers. Comm. ACM 
7, 4 (Apr. 1964), 210-211. 
Description of course developed by Perlis at Carnegie Institute 
of Technology which has strongly influenced the course proposed 
here. 

9. RICE, J. K. AND RICE, J .R .  Introduction to Computer Science: 
Problems, Algorithms, Languages and Information, Preliminary 
edition. Holt, Rinehart and Winston, New York, 1967, 452 pp. 
Presentation revolves around the theme of "problem solving," 
emphasizing algorithms, languages, information representations, 
and machines necessary to solve problems. Problem solution 
methods classified, and many sample problems included. The 
nature of errors and uncertainty is considered. Detailed ap- 
pendix on FORTRAN IV by E. Desautels. 

10. School Mathematics Study Group. Algorithms, Computation 
and Mathematics, rev. ed. Stanford University, Stanford, Calif., 
1966. Student Text, 453 pp., Teacher's Commentary, 301 pp.; 
Algol Supplement: Student Text, 133 pp., Teacher's Commen- 
tary, 109 pp.; Fortran Supplement: Student Text, 132 pp., 
Teacher's Commentary, 102 pp. Available from A. C. Vroman, 
Inc., 367 South Pasadena, Pasadena, Calif. A MAD Language 
Supplement by E. I. Organick is available from Ulrich's Book 
Store, 549 E. University Avenue, Ann Arbor, Mich. 
Although developed for high school students and teachers, this 
work contains much material appropriate for this course. De- 
velops an understanding of the relationship between mathe- 
matics, computing, and problem solving. Basic text uses English 
and flow charts to describe algorithms; supplements introduce 
the computer language and give these algorithms in ALGOL, 
FORTRAN, and MAD. 

Course B2. Computers and Programming (2-2-3) 

APPROACH 

This course is designed to introduce the student to basic computer 
organization, machine language programming, and the use of as- 
sembly language programming systems. A particular computer, ma- 
chine language and programming system should be used extensively 
to illustrate the concepts being taught and to give the student actual 
experience in programming. However, it is important that the course 
not degenerate into mere training in how to program one machine. 
Alternative machine languages, machine organization, and program- 
ming systems should be discussed and compared. Emphasis should 
be placed on the overall structure of the machines and programming 
techniques considered. A "descriptive" presentation of various com- 
puter features and organizations may be very effective; nevertheless, 
it is recommended that a precise language be introduced and used to 
describe computer organizations and instruction execution (as the 
Iverson notation has been used to describe the IBM System/360). 

CONTENT 

The following outline indicates a possible order in which the ma- 
terial for this course might be taught, but other arrangements might 
be equally suitable depending upon the choice of text, availability 
of computing facilities, and preferences of the instructor. Computer 
projects--although not specifically listed below--should be an essen- 
tial part of the course content. 

1. Computer Structure and Machine Language. Organization of 
computers in terms of input-output, storage, control, and processing 
units. Register and storage structures, instruction format and execu- 
tion, principal instruction types, and machine language program- 
ming. Machine arithmetic, program control, input-output operations, 
and interrupts. Characteristics of input-output and storage devices. 
(10%) 

2. Addressing Techniques. Absolute addressing, indexing, indi- 
rect addressing, relative addressing, and base addressing. Memory 
mapping functions, storage allocation, associative addressing, paging, 
and machine organization to facilitate modes of addressing. (5%) 

3. Digital Representation of Data. Bits, fields, words, and other 
information structures. Radices and radix conversion, representation 
of integer, floating-point, and multiple-precision numbers in binary 
and decimal form, and round-off errors. Representation of strings, 
lists, symbol tables, arrays and other data structures. Data trans- 
mission, error detection and correctiom Fixed versus variable word 
lengths. (10%) 

4. Symbolic Coding and Assembly Systems. Mnemonic opera- 
tion codes, labels, symbolic addresses and address expressions. 
Literals, extended machine operations, and pseudo operations. Error 
flags and messages, updating, and program documentation. Scanning 
of symbolic instructions and symbol table construction. Overall de- 
sign and operation of assemblers. (10%) 

5. Selected Programming Techniques (chosen from among the 
following). Techniques for sorting, searching, scanning, and con- 
verting data. String manipulation, text editing, and list processing. 
Stack management, arithmetic expression recognition, syntactic 
recognition, and other compilation techniques. (10%) 

6. Logic Design, Micro-programming, and Interpreters. AND, 
OR, and NOT elements, design of a half-adder and an adder, storage 
and delay elements, and design of an arithmetic unit. Parallel versus 
serial arithmetic, encoding and decoding logic, and micro-program- 
ming. Interpreters, simulation, and emulation. Logical equivalence 
between hardware and software. (5%) 

7. Macros. Definition, call, and expansion of macros. Nested and 
recursive macro calls and definitions. Parameter handling, condi- 
tional assembly, and assembly time computations. (10%) 

8. Program Segmentation and Linkage. Subroutines, coroutines, 
and functions. Subprogram loading and linkage, common data link- 
age, transfer vectors, and parameters. Dynamic storage allocation, 

Volume ill / Number  3 / March. 1968 C o m m u n i c a t i o n s  o f  t h e  ACM 171 



overlays, re-entrant subprograms, and stacking techniques. Linkage 
using page and segment tables: (10%) 

9. Computer Systems Organization. Characteristics and use of 
tapes, disks, drums, cores, data-cells, and other large-volume de- 
vices in storage hierarchies. Processing unit organization, input- 
output channels and devices, peripheral and satellite processors, 
multiple processor configurations, computer networks, and remote 
access terminals. (10%) 

10. Systems and Utility Programs. Loaders, input-output sys- 
tems, monitors, and accounting programs, Program libraries. Or- 
ganization, documentation, dissemination, and maintenance of sys- 
tem programs. (10%) 

11. Recent Developments. Selected topics in computer organiza- 
tion, technology, and programming systems, (5%) 

12, Examinations. (5%) 

ANNOTATED BIBLIOGRAPHY 

Whereas many of the books on "computer programming" might 
seem to be appropriate texts or references for this course, only 
a few even begin to approach the subject as proposed for this course. 
Most books deal with specific machines, actual or hypothetical, 
but very few discuss computer organization from any general point 
Of view Or consider the techniques of symbolic programming by any 
method other than examples. A few of the many books which deal 
with specific machines have been included in this list, but no manu- 
facturers' manuals have been listed even though they may be used 
effectively as supplemental material. 

1. BROOKS, F. P., JR., AND IVERSON, K. E. Automatic Data 
Processing. Wiley, New York, 1963, 494 pp. CR-6673-9523. 
On computing fundamentals, machine language organization 
and programming using IBM 650 as the principal example. 

2. DAVIS, G. B. An Introduction to Electronic Computers. Mc- 
Graw-Hill, New York, 1965, 541 pp. 
Informally written text containing a general introduction to com- 
pUting, rather complete coverage of FORTRAN and COBOL, and 
considerable material on machines and machine language pro- 
gramming. 

3, FISCHER, F. P., AND SWINDLE, G. F. Computer Programming 
Systems. Holt, Rinehart and Winston, New York, 1964, 643 pp. 
CR-6455-6299. 
Part I is concerned with machine oriented programming and pro- 
gramming systems using IBM 1401 as the illustrative computer. 

4. FLORES, I. Computer Programming. Prentice-Hall, Englewood 
Cliffs, N. J., 1966, 386 pp. CR-6674-10,060. 
Covers machine language and software techniques using the 
Flores Assembly Program (FLAP) for illustrative purposes. 

5. HASSlTT, A. Computer Programming and Computer Systems. 
Academic Press, New York, 1967, 374 pp. CR-6784-12,355. 
Discusses various features of computer organization and pro- 
gramming languages using examples from a number of machines 
including IBM 1401, 1620, 7090 and System/360, and CDC 1604 
and 3600. 

6. IVERSON, K.~E. A Programming Language. Wiley, New York, 
1962, 286 pp. CR-6671-9004. 
Introduces a language used extensively for description of com- 
puters as well as for description of computer programs. Contains 
material on machine organization, sorting and data structures. 

7. STARK, P.A. Digital Computer Programming. Macmillan, New 
York, 1967, 525 pp. 
Presents machine language and symbolic programming for a 
24-bit computer. 

8. STEIN, M. L., AND MUNRO, W . D .  Computer Programming: A 
Mixed Language Approach. Academic Press, New York, 1964, 
459 pp. CR-6455-6140. 
A text on computer organization and assembly language pro- 
gramming using CDC 1604 as the basic computer. 

9. WEGNZR, P. Programming Languages, Information Structures 

and Machine Organization. McGraw-Hill, New York, 1968, 
about 410 pp. 
Covers machine languages, multiprogramming, assembler con- 
struction and procedure-oriented languages. Programming lan- 
guages are treated as information structures. 

Course B3. Introduction to Discrete Structures (3-0-3) 

APPROACH 

The theoretical material should be introduced in a mathematically 
precise manner with all concepts and results being amply motivated 
and being illustrated with examples from computer science. The 
student should be given extensive homework assignments of both a 
theoretical and a programming nature which further the under- 
standing of the applications of the concepts in computer science. 

CONTENT 

Since the material listed below is more than can normally be of- 
fered in a one-semester three-credit course on this level, care must 
be taken to select those topics which will support the more ad- 
vanced courses as they are developed at each particular school. The 
description in each of the four sections is divided into two parts la- 
beled (a) Theory and (b) Applications, but in practice the material 
in both parts would be intermixed. 

1. Basic Set Algebra. 
a. Theory: Sets and basic set algebra. Direct products. Map- 

pings, their domains and ranges, and inverse mappings. Finite and 
denumerable sets. Relations including order relations. Set inclusion 
as partial ordering. Equivalence relations, equivalence classes, 
partition of sets, congruences. The preservation of relations under 
mappings. Finite sets and their subsets. Permutations, combina- 
tions, and related combinatorial concepts. 

b. Applications: Examples of sets. The Peano axioms for the set 
of integers. Congruences and ordering relations over the integers. 
Relations over the integers defined by arithmetic operations. The 
set of all subsets of an n-element set and the set of all n-digit 
binary numbers. The set of all strings over a finite alphabet. Lan- 
guages over an alphabet as subsets of the set of all strings over 
the alphabet. Algorithms for listing combinations, compositions, 
or partitions. Algorithms for ranking combinations. 

2. Basic Algebraic Structures. 
a. Theory: Operations on a set. Algebraic structures as sets with 

particular functions and relations defined on it. Groups, subgroups, 
cyclic groups, and other examples of groups. The concepts of 
homomorphism and isomorphism on a set with operations. Semi- 
groups and semigroups of transformations. Definition and general 
discussion of examples of structures with several operations, e.g. 
fields and possibly lattices. 

b: Applications: Computer use for working group theoretic 
problems, e.g. with permutation groups as they occur as input 
transformation in switching networks. The semigroup of all words 
over a fixed finite alphabet under the operation of concatenation. 
The letters of the alphabet as generators. Pair algebra. 

3. Boolean Algebra and Propositional Logic. 
a. Theory: The axioms of set algebra. Axiomatic definition of 

Boolean algebras as algebraic structures with two operations. 
Duality. Basic facts about Boolean functions. Propositions and 
propositional functions. Logical connectives. Truth values and 
truth tables. The algebra of propositional functions. The Boolean 
algebra of truth values. Conjunctive and disjunctive normal forms. 

b. Applications: Boolean algebra and switching circuits. Basic 
computer components. Decision tables. 

4. Graph Theory. 
a. Theory: Directed and undirected graphs. Subgraphs, chains, 

circuits, paths, cycles, connectivity, trees. Graphs and their rela- 

172  C o m m u n i c a t i o n s  o f  the  ACM Volume 11 / Number  3 / March,  1968 



tion to partial orderings. Graph isomorphisms. Cyclomatic and 
chromatic numbers.  The adjacency and the incidence matrices. 
Minimal paths. Matchings of biparti te graphs. Elements of trans- 
port networks. 

b. Applications: Flow charts and state transition graphs. Con- 
nectivity in tlow charts. Syntactic structure of ar i thmetic  expres- 
sions as trees. Graph theoretic examples in coding theory. Algo- 
ri thms for determining cycles and minimal paths. Basic elements 
of' list structures. Accessing problems. Graphs of a game. Matching 
algorithms and some related applications. 

ANNOTATED BIBLIOGRAPHY 

1. BECKENBACH, E. r .  (Ed.) Applied Combinatorial Mathematics. 
Wiley, New York, 1964, 608 pp. 
A collection of articles on a broad spectrum of topics. Not di- 
rectly suitable as a text, but  an  excellent source of ideas and 
an impor tan t  reference. 

2. BERGE, C. Theory of Graphs and Its Applications. Wiley, 
New York, 1962, 244 pp. 
A good presentat ion of directed and undirected graph theory, 
with some at tent ion to algorithms. The work suffers from many 
misprints and errors which have been carried over into the 
English translation. A general reference text for this course. 

3. BmRHOW', G., AND BARTEE, T. Modern Applied Algebra, Pre- 
liminary edition, Parts I and II. McGraw-Hill, New York, 1967. 
Preliminary edition available only in limited quantities, but 
the full text expected by the fall of 1968. Appears to be very 
close in spirit to the material  proposed for this course, but  the 
content is more algebraically oriented and includes little on 
graphs. 

4. BUSACKER, R., AND SAATY, T. Finite Graphs and Networks: 
An Introduction with Applications. McGraw-Hill, New York, 
1965, 294 pp. 
A good work on graph theory with a very nice collection of appli- 
cations. Useful as source and reference for the graph theory part 
of this course. 

5. GROSSMAN, I., AND MAGNUS, W. Groups and Their Graphs. 
Random House, New York, 1965, 195 pp. CR-6564-8003. 
An elementary but  very well written discourse on basic connec- 
tions between group and graph theory. 

6. HARARY, F., NORMAN, R. Z., AND CARTWRIGHT, D. Structural 
Models: An Introduction to the Theory of Directed Graphs. 
Wiley, New York, 1965, 415 pp. CR-6566-8421. 
Excellent on directed graphs and probably the best source book 
on tha t  field. Should be an impor tant  reference for the corre- 
sponding portion of this course. 

7. HOHN, F. Applied Boolean Algebra, 2nd ed. Macmillan, New 
York, 1966, 273 pp. 
Very good introduction to basic facts of Boolean algebra and 
especially its applications in electrical engineering. Important  
reference for the corresponding portion of this course. 

8. KEMENY, J., MmKm, H., SNELL, J., AND THOMPSON, G. Finite 
Mathematical Structures. Prentice-Hall, Englewood Cliffs, 
N. J., 1959, 487 pp. 
A text tbr physical science and engineering students who have 
completed the calculus. First two chapters on compound state- 
ments, sets, and functions should be particularly useful. 

9. KEMENY, J., SNELL, J., AND THOMPSON, G. Introduction to 
Finite Mathematics, 2nd ed. Prentice-Hall, Englewood Cliffs, 
N. J., 1966, 352 pp. 
Freshman-sophomore level text designed primarily for students 
in biological and social sciences. Follows CUPM recommenda- 
tions for the mathematical  education of such students. First 
three chapters on compound statements,  sets and subsets, par- 
titions, and counting cover similar material as proposed for this 
course. 

10. KORFHAGE, R. Logic and Algorithms: With Applications to 
the Computer and In[ormation Sciences. Wiley, New York, 
1966, 194 pp. CR-6782-11,339. 

A fine new text introducing those basic topics from mathematical  
logic important  in computer sc ience-for  instance Boolean alge- 
bra, Turing machines, and Markov algorithms. Written in the 
spirit which should pervade this course. 

11. LEDERMAN, W. Introduction to the Theory of Finite Groups. 
Interscience, New York, 1953, 160 pp. 
A very readable introduction to finite groups. Particularly inter- 
esting to this course is the chapter on permutat ion groups. 

12. MACLANE, S., AND BIRKHOFF, G. Algebra. Macmillan, New 
York, 1967, 598 pp. 
A substantially revised and updated version of A Survey of Mod- 
ern Algebra, which has been a classic text on modern algebra. 
Should be one of the main references for the algebraic parts of 
this course. 

13. ORE, O. Graphs and Their Uses. Random House, New York, 
1963, 131 pp. 
An introduction to the elementary concepts of graph theory. 
Very pleasant to read. 

14. RIORDAN, J. An Introduction to Combinatorial Analysis. Wiley, 
New York, 1958, 244 pp. 
One of the best source books on enumerative combinatorial 
analysis. However, it is too advanced for use as a text in a course 
of this type. 

15. RYSER, H. Combinatorial Mathematics. Wiley, New York, 
1963, 154 pp. CR-6562-7371. 
An excellent introduction to such topics as (0,1) matrices, 
Latin-squares, and block-design, but containing almost no graph 
theory. 

16. WmTESiTT, J. E. Boolean Algebra and Its Applications. Addi- 
son-Wesley, Reading, Mass., 1961, 182 pp. 
An introductory text designed for readers with a limited mathe- 
matical background. 

Course B4. Numerical Calculus (2-2-3) 

APPROACH 

In this course the emphasis is placed upon building algorithms for 
the solution of numerical problems, the sensitivity of these algo- 
r i thms to numerical errors, and the efficiency of these algorithms. 
In the laboratory portion of the course the s tudent  is to complete 
a substantial  number  of computational projects using a suitable 
procedure-oriented language. 

CONTENT 

1. Basic Concepts of Numerical Error. Significant digit arith- 
metic rounding procedures. Classification of error, evaluation of ex- 
pressions and functionS. 

2. Interpolation and Quadrature. Polynomial interpolation, ele- 
ments of difference calculus, Newton and Lagrange formulas, Ait- 
ken's interpolation method, quadrature formulas, Romberg inte- 
gration, numerical differentiation, and the inherent error problems. 

3. Solution of Nonlinear Equations. Bisection method, successive 
approximations including simple convergence proofs, linearization 
and Newton's method, method of false-position. Applications to 
polynomial equations. Generalization to iterative methods for sys- 

tems of equations. 
4. Linear Systems of Equations. Solution of linear systems and 

determinant  evaluation by elimination procedures. Roundoff errors 
and ill-conditioning. Iterative methods. 

5. Numerical Solution of Ordinary Differential Equations. 
Euler's method, modified Euler's method, simplified Runge-Kutta. 

ANNOTATED BIBLIOGRAPHY 

Listed below are some of the books which might be used as texts 
and/or references for this course. Most of the books cover the tbllow- 
ing topics: solution of polynomial and other nonlinear equations; 

V o h n n e  II / N u m b e r  3 / M a r c h ,  1968 C o m m u n i c a t i o n s  of  t h e  ACM 173 



interpolation, numerica l  quadrature,  and numerical dilterentiation; 
ordinary differential equations; and linear algebra. Significant devia- 
tions from these topics are indicated by the annotation.  

1. CONTE, S .D.  Elementary Numerical Analysis: An Algorithmic 
Approach. McGraw-Hill, New York, 1965, 278 pp. 
Designed as a text fbr a one-semester, three-hour course fbr 
engineering and science undergraduate students.  Machine- 
oriented t rea tment  with many illustrative examples including 
flow charts and FORTRAN programs. Except for the chapter on 
differential equations, a knowledge of basic calculus and of 
programming in a procedure-oriented language is sufficient back- 
ground. Numerous exercises. 

2. JENMNGS, W. First Course in Numerical Methods. Macmillan, 
New York, 1964, 233 pp. CR4671-9036. 
Designed as a text for a one-semester course for advanced under- 
graduate students in science and engineering. Brief t rea tment  of 
the standard topics. Presupposes calculus, differential equations, 
some experience with the computer, and, for later chapters, 
matrices. Some exercises. 

3. MACON, N. Numerical Analysis. Wiley, New York, 1963, 161 
PP. 
Designed as a text for a one-semester first course in numerical 
analysis. Emphasis  is more on the mathemat ical  aspects rather 
than the computational aspects al though there is an introduc- 
tory chapter on the elements of computing, flow charting, and 
FORTRAN programming. For the early chapters calculus provides 
sufficient background. For later chapters an elementary knowl- 
edge of matrix theory, differential equations, and advanced cal- 
culus is recommended. Examples and exercises. 

4. McCoRMICK, J. M., AND SALVADORI, M. G. Numerical Meth- 
ods in FORTRAN. Prentice-Hall, Englewood Cliffs, N.J., 1964, 
324 pp. CR-6676-10,883. 
Designed as a text either for an elementary course in numerical 
analysis at  the junior-senior level or for a course in programming. 
First part  presents the methods without reference to program- 
ming techniques. There are 320 examples and problems. The 
last par t  contains 53 completely worked illustrative FORTRAN 
programs. Presupposes beginning analysis. 

5. MCCRACKEN, D., AND DORN; W. S. Numerical Methods and 
FORTRAN Programming. Wiley, New York, 1964, 457 pp. 
CR-6562-7107. 
Designed as a text for a four semester-hour course in science or 
engineering at the sophomore-senior level. Emphasis  on practi- 
cal methods--for example, the t rea tment  of simultaneous linear 
algebraic equations does not make use of matrices. Chapters on 
various aspects of FORTRAN are interspersed with chapters on 
numerical methods. Includes a brief chapter on partial differen- 
tial equations. Presupposes beginning analysis. Examples and 
exercises. 

6. MILNE, W . E .  Numerical Calculus. Princeton University Press, 
Princeton, N. J., 1949, 393 pp. 
Writ ten in 1949 in the early days of computing, this is a very 
useful reference even though the t rea tment  is oriented toward 
manual  computation and though some of the methods have been 
superseded. Presupposes a knowledge of calculus and differential 
equations. Examples and exercises. 

7. NIELSEN, K . L .  Methods in Numerical Analysis, 2nd ed. Mac- 
millan, New York, 1956 and 1964, 382 pp. CR-6455-6333. 
Designed as a textbook for a practical course tbr engineers. Pri- 
mary emphasis on the use of desk calculators and tables. Pre- 
supposes calculus. Examples and exercises. 

8. PENNINGTON, R. H. Introductory Computer Methods and Nu- 
merical Analysis. Macmillan, New York, 1965, 452 pp. CR-6565- 
8060. 
Designed as a text for a one-year elementary course for scientists 
and engineers to be taken immediately after integral calculus. 
The first part  treats digital computers and programming. Nu- 
merical methods are then discussed from a computer viewpoint 
with the aid of flow diagrams. Little knowledge of computing is 
assumed. For some of the topics a knowledge of matrices and 

9. 

10. 

ordinary differential equations would be helpful. Many examples 
and exercises. 

SINGER, J. Elements of Numerical Anal3'sis. Academic Press, 
New York, 1964, 395 pp. CR-6561-6959. 
Designed as a text {br junior undergraduate s tudents  in mathe. 
matics. Treatment  geared more to manual  computat ion than to 
the use of computers. Presupposes beginning analysis and, for 
some parts, dilierential equations and advanced calculus. Ex- 
amples and exercises. 

STmVEL, E. L. An Introduction to Numerical Mathematics, 
transl, by W. C. and C. J. Rheinboldt.  Academic Press, New 
York, 1963, 286 pp. CR-6455-6335. 
Appropriate for a junior-senior level course in mathematics, 
science, and engineering. Emphasis  is on the algorithmic ap- 
proach, although there are only a few flow charts  and specific 
references to programs. A wide variety of topics and methods 
is treated. Basic calculus is required for the early chapters, but 
for later chapters familiarity with ordinary differential equations 
is desirable. Examples are given. There is a separate problem 
supplement with 36 exercises. 

Course I1 .  Data Structures (3-0-3) 

APPROACH 

This course is intended to present the data structures which may 
be used in computer storage to represent the intbrmation involved 
in solving problems. However, emphasis should be placed on treat- 
ing these data structures independently of the applications in which 
they are embedded. Each data structure should be motivated care- 
fully in terms of the operations which may conveniently be per- 
formed, and illustrated with examples in which the structure is use- 
tul. The identification of the natural  relations between entities 
involved in problems and alternate representations of information 
should be stressed. Computer  storage structures should also be d e - )  
scribed and classified according to their characteristics, and the 
interaction between data structures and storage structures should be 
studied. 

The s tudent  should be required to apply the techniques pre- 
sented to problems which illustrate a wide variety of data  structures. 
Solutions to a number  of these problems should be programmed 
and run on a computer. 

CONTENT 

More material is listed here than can normally be covered in a 
one-semester course. The instructor should carefully select material 
which gives the s tudent  a broad introduction to this subject, but 
which fits together pedagogically. It may be desirable to develop an 
advanced course to cover some of these topics more completely. 

1. Basic Concepts of Data. Representation of information 
data  inside and outside the computer. Bits, bytes, fields and da 
items. Records, nodes and data elements. Data files 
Names, values, environments,  and binding times of d~ 
pointer or linkage variables to represent data structure. 
entities about  which data is to be maintained,  and seh 
nodes and structures which are to be used in problem solution. 
age media, storage structures, encoding of data and t ransform 
from one medium and/or code to another. Alternative repre.. 
tions of information and data. Packing, unpacking, and compr 
of data. Data formats, data description languages, and specifi, 
of data transformations. 

2. Linear Lists and Strings. Stacks, last-in-first-out, first-b 
out, double-ended, and other linear lists. Sequential versus 
storage allocation. Single versus double linkage. Circular lists. 
acter strings of variable length. Word packing, part-word addr( 
and pointer manipulation. Insertion, deletion and accessing 
elements. 

3. Arrays and Orthogonal Lists. Storage of rectangular arras 
one-dimensional media. Storage mapping f\mctions, direct and 

174 C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  I t  / N u m b e r  3 / M a r c h ,  



direct address computation, space requirements, set-up time, ac- 
.~:;~ cessing time, and dynamic relocation time. Storage and accessing 

triangular arrays, tetrahedral arrays, and sparse matrices. 
4. Tree Structures. Trees, subtrees, ordered trees, free trees, 

oriented trees and binary trees. Representation of' trees using binary 
trees, sequential techniques, or threaded lists. Insertion, deletion, 
and accessing elements of trees. Relative referencing, finding suc- 
cessors and predecessors, and walking through trees. Examples of 
tree structures such as algebraic [brmulas, arrays, and other hier- 
archic data structures (PL/I and COBOL). 

5. Storage Systems and Structures. Behavioral properties of 
rd (card), random access (core), linear (tape), and inter- 
disk, drum, etc.) storage media and devices including cost, 
~d, reusability, inherent record and file structure, and 
~s and interrelation of these properties. Influence of ma- 
ucture--in particular addressing--on data structuring. 
es of storage, virtual memory, segmentation, paging, and 
• Influence of data structures and data manipulation on 
stems. Associative structures, both hardware and software. 
age Allocation and Collection. Static versus dynamic al- 
Sequential versus linked allocation. Last-in-first-out data 
;a of unrelated life times. Uniform block size and available 
s. Variable block size and stratified available space lists. 
elease of available storage. Coalescing adjacent free space 
,acting occupied space or data. Accessing disciplines fbr 
lata, unmovable anchors, and updating of pointers. Refer- 
Lts and list borrowing. Garbage collection by surveying 
9.. 
tilinked Structures. Use of difierent types of data nodes 
ts. Use of different types of linkage to sequence, adjoin, or 
data elements and to build hierarchies of data structures. 
ist names, list heads, and attribute lists. Multidimensional 
:s and mixed list structures. Accessing, insertion, deletion 
;ing. Relative referencing, finding successors and predeces- 
walking through structures. Representation of graphs and 
Structures used fbr string manipulation and list processing 

!ng (Ordering) Techniques. Radix sorting, radix ex 
'ting, merge sorting, bubble sorting, address table sorting, 
[ sorting and other sorting methods. Comparative efficiency 
;echniques. Efl~ct of data structures and storage structures 
techniques. 
bol Tables and Searching. Linear, stack, tree and scatter 

tables, and table lookup techniques. Hash code algo- 
~e of index lists and associative techniques. Comparison 
;trategies in terms of speed and cost. Batching and order- 
aests to remote storage to minimize number of accesses. 
tory as an example of structure organized for searching. 
:a Structures in Programming Languages. Compile-time 
me data structures needed to implement source language 
:tures of programming languages. Linkage between par- 
uted procedures, data structures fbr coroutines, scheduled 
~, and other control structures, and storage management of 
tures in procedure-oriented languages. Examples of higher 
rages which include list processing and other data struc- 
ures. 
real Specification of Data Structures. Specification of 

classes of data structures. Predicate selectors and con- 
br data manipulation, data definition fhcilities, programs 
uctures, computers as data structures and transfbrmations, 
,cification of semantics, and formal systems viewed as data 

wralized Data Management Systems. Structures of gen- 
Lata management systems: directory maintenance, user 
(query), data description maintenance, and job manage- 
bedding data structures in generalized data management 
~:xamples of generalized data management systems and 
n of system features. 

II / Nt tml)er  3 / M a r c h ,  1968 

ANNOTATED BIBLIOGRAPHy 

Although a great deal of material is available in this area, very 
little of it is appropriate for classroom use. 

1. Association for Computing Machinery. ACM sort symposium, 
Nov. 29-30, 1962, Princeton, N. J. Comm. ACM 6, 5 (May 
1963), 194-272. 

Seventeen papers on various aspects of sorting. 

2. Association for Computing Machinery. Papers presented at the 
ACM Storage Allocation Symposium, June 23-24, 1961, Prince- 
ton, N. J. Comm. ACM4, 10 (Oct. 1961), 416-464. 
Eleven papers on various techniques of storage allocation. 

3. Association fbr Computing Machinery. Proceedings of the 
ACM Symposium on Symbolic and Algebraic Manipulation, 
Washington, D. C., Mar. 29-31, 1966. Comm. ACM 9, 8 (Aug. 
1966), 547-643. 

Eleven papers some of which discuss applications of data struc- 
turing techniques. One paper by Knowlton describes the list 
language L G. 

4. CLIMENSON, W. •. File organization and search techniques. In 
C. A. Cuadra (Ed.), Annual Review of Information Science and 
Technology, Vol. I, (Amer. Doc. Inst., Ann. Rev. ser.), Inter- 
science, New York, 1966, pp. 107-135. CR-6783-11,900. 
Surveys file organizations and data structures with particular 
emphasis on developments during 1965. Provides framework for 
some of the material covered by this course. An extensive bib- 
liography. 

5. COHEN, J. A use of fast and slow memories in list-processing 
languages. Comm. ACM 10, 2 (Feb. 1967), 82-86. 
Describes a paging scheme which keeps the "most often called 
pages in the fast memory" and involves a slow down of 3 to 10 
as compared with in-core operations. 

6. Control Data Corporation• 3600/3800 INFOL Reference Manual. 
Publication No. 60170300, CDC, Palo Alto, Calif., July 1966. 
Describes the INFormation Oriented Language which is designed 
for information storage and retrieval applications. 

7. DAHL, O.-J., AND NYGAARD, K. SIMULA--an AI,GOL-based 
simulation language. Comm. ACM 9, 9 (Sept. 1966), 671-678. 
Contains interesting data and control structures. 

8. D'IMPERIO, M. Data structures and their representation in 
storage. In M. Halpern (Ed.), Annual Review in Automatic 
Programming, Vol. 5, Pergamon Press, New York, spring 1968. 
Defines certain basic concepts involved in the representation of 
data and processes to be performed on data. Analyzes a problem 
and describes nine different solutions involving different data 
structures. Discusses ten list processing languages and gives 
examples of their data and storage structures. 

9. FITZWATER, D . R .  A storage allocation and reference structure. 
Comm. ACM 7, 9 (Sept. 1964), 542-545. CR-6561-6933. 
Describes a method of structuring and referencing dynamic 
structures in AUTOCODER for the IBM 7070/72/74. / 
General Electric Company. Integrated Data Store--A New 
Concept in Data Management. Application Manual AS-CPB- 
483A, Revision of 7-67, GE Computer Division, Phoenix, Ariz., 
1967. 
Describes a sophisticated data management system which uses 
paging and chaining to develop complex data structures. 

GRAY, J . C .  Compound data structures for-computer-aided de- 
sign: a survey. Proc. ACM 22nd Nat. Conf., 1967, Thompson 
Book Co., Washington, D. C., pp. 355-365. 
Considers requirements of a data structure software package and 
surveys a number of such packages. 

HELLERMAN, H. Addressing multidimensional arrays: Comm. 
ACM 5, 4 (Apr. 1962), 205-207. CR-6235-2619. 
Surveys direct and indirect methods for accessing arrays. 

IVERSON, K. E. A Programming Language. Wiley, New York, 
1962, 286 pp. CR-6671-9004. 

C o m m u n i c a t i o n s  of  t h e  ACM 175 

10. 

/ 

11. 

12. 

13. 



Contains considerable material on data structures, graphs, trees, 
and sorting, as well as a language for describing these. 

14. KLEIN, M. M. Scheduling project networks. Comm. ACM I0, 
4 (Apr. 1967), 225-234. CR-6784-12,275. 
Discusses project networking and describes the C-E-I-R critical 
path algorithm. 

15. KNUTH, D . E .  The Art of Computer Programming, Vol. I, Fun- 
damental Algorithms. Addison-Wesley, Reading, Mass., 1968, 
634 pp. 
Chap. 2 on "Information Structures" contains the first compre- 
hensive classification of data structures to be published. Each 
structure considered is carefully motivated and generously 
illustrated. Includes a brief' history of data structuring and an 
annotated bibliography. 

16. LANDIN, P . J .  The mechanical evaluation of expressions. Corn- 
put. J. 6, 4 (Jan. 1964), 308-320. CR-6456-6677. 
Presents a mathematical language based on Church's X-notation 
and uses it to describe computational structures such as expres- 
sions and lists. 

17. LAWSON, H. W., JR. PL/I list processing. Comm. ACM 10, 6 
(June 1967), 358-367. 
Discusses the list processing facilities in PL/I. 

18. MADNICK, S . E .  String processing techniques. Comm. ACM I0, 
7 (July 1967), 420-424. 
Presents and evaluates six techniques for string data storage 
structures. One of these techniques is used for an implementa- 
tion of SNOBOL on an IBM System/360. 

19. MARRON, B. A,, AND DE MAINE, P. A .D .  Automatic data com- 
pression. Comm. ACM I0, 11 (Nov. 1967), 711-715. 
Describes a three-part compressor which can be used on "any" 
body of infbrmation to reduce slow external storage require- 
ments and to increase the rate of information transmission 
through a computer. 

20. MEALY, G. H. Another look at data. Proc. AFIPS 1967 Fall 
,Joint Comput. Conf., Vol. 31, Thompson Book Co., Washington, 
D. C., pp. 525-534. 
Sketches a theory of data based on relations. Includes some 
rather precise definitions of concepts such as data structure, 
list processing, and representation. 

21. MINKER, J., AND SABLE, J. File organization and data manage- 
ment. In C. A. Cuadra (Ed.), Annual Review of Information 
Science and Technology, Vol. 2, (Amer. Doc. Inst., Ann. Rev. 
ser.). Interscience, New York, 1967, pp. 123 160. 

Surveys file organizations and generalized data management 
systems developed during 1966. Describes linkage types, data 
structures, storage structures, and how data structures have 
been mapped into storage structures. Extensive bibliography. 

22. MORRIS, R. Scatter storage techniques. Comm. ACM 11, 1 (Jan. 
1968), 38-44. 

Surveys hashing schemes for symbol table algorithms. 

23. ROSEN, S. (Ed.) Programming Languages and Systems. Mc- 
Graw-Hill, New York, 1967, 734 pp. 
Part 4 of this collection contains papers on IPL-V, COMIT, SLIP, 
SNOBOL, LISP and a comparison of list-processing computer lan- 
guages. 

24. Ross, D . T .  The AED free storage package. Comm. ACM 10, 8 
(Aug. 1967), 481-492. 
Describes a storage allocation and management system %r the 
mixed n-component elements ("beads") needed for "plex pro- 
gramming." 

25. SALTON, G. Data manipulation and programming problems in 
automatic infbrmation retrieval. Comm. ACM 9, 3 (Mar. 1966), 
204-210. CR-6674-10,078. 
Describes a variety of representations for tree structured data 
and examines their usefulness in retrieval applications. 

26. SnwTr, D. A., LovE, H. H., JR., ANn TROOP, R . E .  ASP: a new 
concept in language and machine organization. Proc. 1967 

Spring Joint Comput. Conf., Vol. 30, Thompson Book Co., 
Washington, D. C., pp. 87-102. 
Describes the data bases used in the "Association-Storing 
Processor." These structures are complex in organization and 
mayvary dynamically in both organization and content. 

27. SCHORR, H., AND WAITE, W. M, An efficient machine-independ_ 
ent procedure tbr garbage collection in various list structures. 
Comm. ACM 10, 8 (Aug. 1967), 501 506. 
Reviews and compares past garbage collection methods and 
presents a new algorithm. 

28. STANDISH, T. A. A data definition facility {br programming 
languages. Ph.D. Thesis, Carnegie Institute of Technology, 
Pittsburgh, Pa., 1967. 
[)resents a descriptive notation for data structures which is em- 
bedded in a programming language. 

29. WEGNER, P. (Ed.) Introduction to Systems Programming. Aca- 
demic Press, New York, 1965, 316 pp. CR-6455-6300. 
Contains a collection of papers of which the following are of 
special interest tbr this course: Iliffe, pp, 256-275; Jenkins, pp. 
283-293; and Burge, pp. 294-312. 

30. WEGNER, P, Programming Languages, Information Structures, 
and Machine Organization. McGraw-Hill, New York, 1968, 
about 410 pp. 
Introduces information structures and uses them in describing 
computer organization and programming languages. 

Course I2. Programming Languages (3-0-3) 

APPROACH 

This course is intended to survey the significant features of exist- 
ing programming languages with particular emphasis on the under- 
lying concepts abstracted from these languages. The relationship 
between source programs and their run-time representation during 
evaluation will be considered, but the actual writing of compilers 
is to be taught in Course I5. 

CONTENT 

There are four basic parts of' this course: the structure of simple 
statements; the structure of algorithmic languages; list processing 
and string manipulation languages; and topics in programming lan- 
guages. 

Part A. Structure of Simple Statements. (10 lectures) 

1. Informal syntax and semantics of arithmetic expressions and 
statements, translation between infix, prefix, and postfix notation, 
and the use of pushdown stores for translation and execution of 
arithmetic expressions and statements. Precedence hierarchy of 
arithmetic operations, relational operators, and Boolean operators, 
Backus normal form representation of syntax of arithmetic state- 
ments and the semantics of arithmetic statements. (6 lectures) 

2. Precedence relations, precedence grammars, and syntactic 
analysis of precedence grammars. Application to arithmetic ex- 
pressions, code generation, error diagnostics and error correction for 
syntactic arithmetic expression compilation. (4 lectures) 

Part B. Structure of Algorithmic Languages. (20 lectures) 

3. Review of program constituents, branching statements and 
loops. (2 lectures) 

4. Grouping of statements, declarations, "types " of program con- 
stituents, nomenclature, scopes, local and nonlocal quantities, in- 
dependent blocks (FORTRAN), and nested blocks (ALGOL). (2 lectures) 

5. Function and statement type procedures, formal parameters 
and actual parameters, and call by value, name and reference. Bind- 
ing time of program constituents, recursive procec]ures, and side ef- 
{ects during execution of procedures. (3 lectures) 

6. Storage allocation for independent blocks (FORTRAN) and stor- 
age allocation for nested blocks and procedures using a run-time 

iii!'i 

176 C o m m u n i c a t i o n s  of  t i le  ACM V o l u m e  l l  / N u m b e r  3 / M a r c h ,  1968 



pushdown store. Overall structure of' an ALGOL-style compiler. (3 
lectures) 

7. Coroutines, tasks, interrupt specificatien, and classification of 
control structures in procedure-oriented languages. (2 lectures) 

8. Syntactic specification of procedures, blocks and statements. 
Formal semantics corresponding to syntactic specification. Survey of 
principal concepts of syntactic analysis. (5 lectures) 

9. Generalized arrays. Data definition facilities, pointer-valued 
variables, and list creation and manipulation using pointer-valued 
variables. Templates and controlled storage allocation. Distinction 
between data specification by a data template and the creation of 
instances of a specified data structure. (3 lectures) 

Part C. List Processing and String Manipulation Languages. (7 
lectures) 

1O. List structures, basic operations on list structures, Lisp-like 
languages, machine-oriented list processing languages (IPL-V), em- 
bedding of list operations in algorithmic languages (SLIP), dynamic 
storage allocation for list languages, and garbage collection. (5 lec- 
tures) 

11. String structures, operations on strings, and functions which 
have strings as arguments and strings as their values (SNOBOL). (2 
lectures) 

Part D. Topics in Programming Languages. (8 lectures) 

12. Additional features of programming languages, simulation 
languages, algebraic manipulation languages, and languages with 
parallel programming facilities. (2 6 lectures) 

I3. Formal description of languages and their processors. The 
work of Floyd, Wirth, and others. (2-6 lectures) 

14. Other topics selected by the instructor~ 

ANNOTATED BIBLIOGRAPHY 

1. American Standards Association X3.4.1 Working Group. To- 
ward better documentation of programming languages. Comm. 
ACM 6, 3 (Mar. 1963), 76-92. 
A series of papers describing the documentation of significant 
current programming languages. 

2. Association for Computing Machinery. Proceedings of the 
ACM programming languages and pragmatics conference, San 
Dimas, Calif., August 8-12, t965. Comm. ACM 9, 3 (Mai'. 1966), 
137-232. 
Includes a number of papers applicable to this course. 

3. Association for Computing Machinery. Proceedings of the AcM 
symposium on symbolic and algebraic manipulation, Washing- 
ton, D. C., March 29-31, 1966. Comm. ACM 9, 8 (Aug. 1966), 
547-643. 
A number of languages for symbolic and algebraic manipulation 
are described inn this special issue. 

4. DAHL, O.-J., AND NYGAARD, K. SiMULA--an ALGOL- 
based simulation language. Comm. ACM 9, 9 (Sept. 1966L 671- 
678. 
Describes a language encompassing ALGOl,, but having many 
additional features including those needed tbr simulation. 

5. GALLER, B. A., AND PERHS, A. J. A proposal tbr definitions 
in ALGOL. Comm. ACM 10, 4 (Apr. 1967), 204-219. 
Describes a generalization of ALGOL which allows new data 
types and operators to be declared. 

6. GOODMAN, R. (Ed.) Annual Review in Automatic Program- 
ming, Vols. l, 2, 3, 4. Pergamon Press, New York, 1960 to 1965. 
CR-6123-0811, CR-6235-2602, and CR-6564-7901. 
These volumes contain several papers which are applicable to 
this course. 

7. HAt,STEAD, M. H. Machine-Independent Computer Program- 
,~. Spartan Books, New York, 1962. 

tains both internal and external specifications of the 
IAC programming language. 

8. IEEE Computer Group. The special issue on computer lan- 
guages. IEEE Trans. EC-13, 4 (Aug. 1964), 343-462. 
Contains articles on ALGOL, FORTRAN, FORMAC, SOL and 
other computer languages. 

9. International Business Machines. PL/I Language Specification. 
Form C28-6571-4, IBM System/360 Operating System, IBM 
Corporation, White Plains, N. Y., 1967. 
A specification of the PL/I language. 

10. International Standards Organization Technical Committee 97, 
Subcommittee 5. Survey of' programming languages and proc- 
essors. Comm. ACM 6, 3 (Mar. 1963}, 93-99. 
An international survey of current and imminent programming 
languages. 

11. KNUTH, D. E. The remaining trouble spots in ALGOL 60, 
Comm. ACM 10, 10 (Oct. 1967), 611-618. 
This paper lists the ambiguities which remain in ALGOL 60 and 
Which have been noticed since the publication of the Revised 
ALGOL 60 Report in 1963. 

12. MARKOWITZ, H. M., KARR, H. W., AND HAUSNER, B. SIM- 
SCRIPT: A Simulation Programming Language. Prentice-Hall, 
Englewood Cliffs, N. J., 1963, 138 pp. 
A description of the SIMSCRIPT simulation language. There is a 
new SIMSCRIPT 1.5 supplement noW available which describes 
a generalization of the original language. 

13. MOOERS, C .N .  TRAC, a procedure-describing language for the 
reactive typewriter. Comm. ACM 9, 3 (Mar. 1966), 215-219. 
CR-6674-10,079. 
Describes a language for the manipulation of text from an on- 
line typewriter. 

14. NAUR, P. (Ed.) Revised report on the algorithmic language, 
ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 1-17. CR-6016-0323. 
The Backus normal form notation was developed to help de- 
scribe the syntax of ALGOL in the original version of this report 
(Comm. ACM3, 5 (May 1960), 299-314). 

15. PERLIS, A.J .  The synthesis of algorithmic systems--first annual 
A. M. Turing lecture. J. ACM 14, 1 (Jan. 1967), 1-9. CR-6782- 
11,512. 
A stimulating talk on the nature of programming languages and 
the considerations which should underlie their future develop- 
ment. 

16. ROSEN, S. (Ed.) Programming Systems and Languages. Mc- 
Graw-Hill, New York, 1967, 734 pp. 
This collection of papers contains many of the important refer- 
ences for this course. In particular, Parts 1 and 2 of the collec- 
tion are useful for Parts A and B of the course and Part 4 of 
the collection is useful for Part C of the course. 

i7. ShAw, C. J. A comparative evaluation of JOVIAL and FOR- 
TRAN IV. Automatic Programming Inf., No. 22. Technical Col- 
lege, Brighton, England, Aug. 1964, 15 pp. CR-6562-7265. 
A descriptive point-by-p0int comparison of these two languages. 
Concerned mainly with the features of the languages rather 
than their processors. 

18. SHAW, C . J .  A programmer's look at JOVIAL, in an ALGOL 
perspective. Datamation 7, 10 (Oct. 1961}, 46-50. CR-6233-1933. 
An interesting article showing how ALGOL and JOVIAL evolved 
fl'om ALGOL 58 and how they differ. 

I9. USA Standards Institute. Standards X3.9-1966, FORTRAN 
and X3.10-1966, Basic FORTRAN. USASI, 10 East 40th Street, 
New York, N. Y. 10016, 1966. 
Standard definitions of essentially FORTRAN II and FORTRAN IV. 
These also appeared in almost final form in Comm. ACM 7, 
10 (Oct. 1964), 591-625. 

20. WEGNER, P. Programming Languages, Information Structures, 
and Machine Organization. McGraw-Hill, New York, 1968, 
about 410 pp. 
Develops a unified approach to the study of programming lan- 
guages emphasizing the treatment of such languages as infor- 

11 / N u m b e r  3 / M a r c h ,  1968 C o m m u n i c a t i o n s  of  t h e  ACM 177 



mation structures. First two chapters devoted to machine or- 
ganization, machine language, and assembly language, but 
much of Chap. 3 and essentially all of Chap. 4 devoted to the 
topics of this course. 

21. WroTH, N. A generalization of ALGOL. Comm. ACM 6, 9 
(Sept. 1963), 547-554. CR-6451-5030. 
Proposes a generalization of ALGOL which involves the elimina- 
tion of "type" declarations and the replacement of procedure 
declarations by an assignment of a so-called "quotation." 

22. WroTH, N., AND WEBER, H. EULER--a generalization of 
ALGOL and its formal definition, Parts I and II. Comm. ACM 
9, 1 (Jan. 1966), 13-23, and 2 (Feb. 1966), 89-99. 
Develops a method for defining programming languages which 
introduces a rigorous relationship between structure and mean- 
ing. The structure of a language is defined by a phrase struc- 
ture syntax and the meaning is defined in terms of the effects 
which the execution of a sequence of interpretation rules has 
upon a fixed set of variables called the "environment." 

Course 13. Computer Organization (3-0-3) or (3-2-4) 

APPROACH 

This course is intended to introduce the student to the basic 
ideas of computer elements and logic design techniques and to the 
principles of computer systems organization. Emphasis should be 
placed on the various alternative possibilities which must be con- 
sidered in arriving at a computer design; choices such as character 
or word organized data, serial or parallel data transmission, syn- 
chronous or asynchronous control should be compared and evaluated. 

In addition to using block diagrams, it is recommended that a 
formal descriptive language for computer specification be introduced 
and used to provide a uniform method for the presentation of much 
of the material. The student should carry out a detailed computer 
design project and evaluate his design by simulation, if possible. A 
laboratory in which simple logic elements may be combined to 
perform digital functions is also desirable. 

CONTENT 

The following topics are to be covered, although not necessarily 
in the order listed. 

1. Basic Digital Circuits. Switches, relays, transistors, diodes, 
magnetic cores, circuits of individual elements, and integrated cir- 
cuits. (These topics may be spread throughout the course.) (5%) 

2. Boolean Algebra and Combinational Logic. Boolean values, 
variables, operations, expressions and equations. Logic elements 
such as AND, OR, NOT, NAND and NOR. Correspondence between 
Boolean functions and combinations of logic elements. (5%) 

3. Data Representation and Transfer. Flip-flops, registers, core 
storage, and other memory elements. Review of number representa- 
tions, binary versus binary-coded decimal representation, and integer 
versus floating-point representation. Weighted and nonweighted 
codes, redundancy, and coding of character information. Coders and 
decoders. Clearing, gating and other transfer considerations. (10%) 

4. Digital Arithmetic. Counters, comparators, parity checkers, 
and shift registers. Half and full adders. Serial versus parallel ad- 
ders. Subtraction and signed magnitude versus complemented arith- 
metic. Multiplication and division algorithms. Integer versus float- 
ing-point arithmetic. Double precision arithmetic. Elementary 
speed-up techniques for arithmetic. (10%) 

5. Digital Storage and Accessing. Structure of core memory, 
memory control, data buses, and address buses. Addressing and ac- 
cessing methods including index registers, indirect addressing, base 
registers, and other techniques. Overlapping, interleaving, protec- 
tion, dynamic relocation, and memory segmentation methods. Char- 
acteristics of drum, disk, tape, and other surface recording media 
and devices. Data flow in multimemory systems and hierarchies of 
storage. (10%) 

6. Control Functions. Synchronous versus asynchronous control. 
Time pulse distributors, controlled delay techniques, and Gray code 
control sequencers. Instruction repertoire, decoding networks, and 
sequencing methods. Centralized, decentralized, and micro-pro. 
grammed control units. Internal, external and trapping interrupts. 
Interrupt sensing, priority, selection, recognition, and processing. 
Input-output control. (10%) 

7. Input-Output Facilities. Characteristics of input-output de- 
vices and their controllers. Relationship between input-output de- 
vices, main storage, auxiliary storage, buffers, data channels, and 
multiplexers. Serial versus parallel transmission. Low speed, high 
speed, and burst mode data flow. (10%) 

8. System Organization. Overall organization of modules into a 
system. Interface between modules. Word-oriented versus character- 
oriented machines. Simplex and multiprocessor machines. Special 
purpose computers. Relationship between computer organization 
and software. (15%) 

9. Reliability. Error detection and correction. Diagnostics and 
preventive maintenance. Start-up, power-down, and recovery pro- 
cedures. (5%) 

10. Description and Simulation Techniques. Definition of a 
formal computer description language which would be used in dis- 
cussing most of the other topics listed for the course. Use of a com- 
puter simulator to design and test simple computers or computer 
modules. (10%) 

11. Selected Topics. Multiple arithmetic units, instruction 
overlapping, and look-ahead techniques. Discussion of alternate 
organizations including highly parallel machines. (5%) 

12. Examinations. (5%) 

ANNOTATED BISLIOGRAPHY 

As indicated, several of the books listed below might possibly 
be used as texts for this course, but it probably would be good to 
supplement any of them with additional material. Only a few of the 
many references on computer description languages and programs 
for simulating computer designs are listed; no annotations are given 
for these. 

General textbooks 
1. BARTEE, T .C .  Digital Computer Fundamentals. McGraw-Hill, 

New York, 1960, 1966, 401 pp. CR-6676-10,647. 
Not advanced enough but a very useful supplement for circuits 
and equipment. 

2. BARTEE, T. C., LEBOW, I. L., AND REED, I. S. Theory and De- 
sign o/Digital Systems. McGraw-Hill, New York, 1962, 324 pp. 
CR-6344-4416. 
Very mathematical and somewhat out-of-date. An interesting 
reference. 

3. BRAUN, E. L. Digital Computer Design--Logic, Circuitry, and 
Synthesis. Academic Press, New York, 1963, 606 pp. CR-6453- 
5484. 
Somewhat out-of-date for a text but useful as a reference. 

4. BUCHHOLZ, W. Planning a Computer System. McGraw-Hill, 
New York, 1962, 336 pp. CR-6346-4786. 
Good reference on systems concepts but somewhat dated. 

5. Burroughs Corporation. Digital Computer Principles. Mc- 
Graw-Hill, New York, 1962, 507 pp. 
Restricted scope (engineering oriented) and dated, but could be 
used as a reference. 

6. CHU, Y. Digital Computer Design Fundamentals. McGraw- 
Hill, New York, 1962, 481 pp. CR-6343-4198. 
Good reference which contains a wealth of material on logic de- 
sign. 

7. FLORES, I. Computer Logic. Prentice-Hall, Englewood Cliffs, 
N. J., 1960, 458 pp. CR-6122-0641 and CR-6124-0936. 
Dated and unorthodox but possibly useful for supplementary 
reading. 

8. FLoaes, I. The Logic of Computer Arithmetic. Prentice-Hall, 

~;ii) 

178 C o m m u n i c a t i o n s  o f  t he  ACM Volume 11 / Number  3 / March,  1968 



Englewood Cliffs, N. J., 1963, 493 pp. CR-6452-5458. 
Very detailed, unorthodox treatment of computer arithmetic. 

9. GSCHWIND, H. W. Design of Digital Computers. Springer- 
Verlag, New York, 1967. 
A possible text. 

I0. HELLERMAN, H. Digital Computer System Principles. Mc- 
Graw-Hill, New York, 1967, 424 pp. 
A possible text. Uses Iverson notation throughout. Would have 
to be supplemented on circuits and equipment as well as novel 
organizations. 

11. MALAY, G. A., AND SKIKO, E. J. Modern Digital Computers. 
Prentice-Hall, Englewood Cliffs, N. J., 1964, 216 pp. CR-6561- 
7081. 
A possible reference. Somewhat dated but contains a good de- 
scription of' the IBM 7090 and 7080 machines. 

12. MURTHA, J . C .  Highly parallel information processing systems. 
In F. L. Alt (Ed.), Advances in Computers, Vol. 7. Academic 
Press, New York, 1966, pp. 1-116. CR-6782-11,678. 
A useful reference on highly parallel systems. 

13. PHISTER, M., JR. Logical Design of Digital Computers. Wiley, 
New York, 1958, 408 pp. 
Somewhat dated. Relies heavily on sequential circuit theory 
and concentrates on serial, clocked machines. 

14. RICHARDS, R. K. Arithmetic Operations in Digital Computers. 
D. Van Nostrand, Princeton, N. J., 1955, 397 pp. 
Somewhat dated but still a good reference for arithmetic. 

15. RmHARDS, R. K. Electronic Digital Systems. Wiley, New 
York, 1966, 637 pp. CR-6676-I0,649. 
An interesting reference for reliability and design automation. 
Discusses telephone systems and data transmission. 

References on computer description languages 
16. CHU, Y. An ALGOL-like computer design language. Comm. 

ACM8, 10 (Oct. 1965), 607-615. CR-6672-9315. 
17. FALKHOFF, A. D., IVERSON, K. E., AND SUSSENGUTH, E. H. A 

formal description of System/360. IBM Syst. J. 3, 3 (1964), 198- 
263. 

18. GORMAN, D. F., AND ANDERSON, J. P. A logic design trans- 
lator. Proc. AFIPS 1962 Fall Joint Comput. Conf., Vol. 22, Spar- 
tan Books, New York, pp. 251-261. 

19. IVERSON, K. E. A Programming Language. Wiley, New York, 
1962, 286 pp. CR-6671-9004. 

20. McCLuRE, R. M. A programming language for simulating 
digital systems. J. ACM 12, 1 (Jan. 1965), 14-22. CR-6563-7634. 

21. PARNAS, D. L., AND DARRINGER, J. A. SODAS and a meth- 
odology for system design. Proc. AFIPS 1967 Fall Joint Comput. 
Conf., Vol. 31, Thompson Book Co., Washington, D. C., pp. 
449-474. 

22. WILBUR, J. A. A language for describing digital computers. 
M.S. Thesis, Report No. 197, Dept. of Comput. Sci., U. of Illi- 
nois, Urbana, Ill., Feb. 15, 1966. 

Course I4. Systems Programming (3-0-3) 

APPROACH 

This course is intended to bring the student to grips with the 
actual problems encountered in systems programming. To accom- 
plish this it may be necessary to devote most of the course to the 
study of' a single system chosen on the basis of availability of com- 
puters, systems programs, and documentation. 

The course should hegin with a thorough review of "batch" 
processing systems programming, emphasizing loading and subrou- 
tine linkage. The limitations of these systems should be used to 
motivate the more complex concepts and details of multiprogram- 
ming and muttiprocessor systems. The theoretical concepts and 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 

practical techniques prescribed in Course I1 should be used to 
fbcus on the data bases, their design for the support of the func- 
tions of the key system components (hardware and software), and 
the effective interrelation of these components. Problem assign- 
ments should involve the design and implementation of systems 
program modules; the design of files, tables or lists for use by such 
modules; or the critical use and evaluation of existing system pro- 
grams. Other problems might involve the attaching or accessing of 
procedure or data segments of different "ownership" that are resi- 
dent in a single file system or the development of restricted access- 
ing methods (i.e. privacy schemes) and other such techniques. 

CONTENT 

This description has been written with MULTICS in mind as the 
system chosen for central study, but the description can be modi- 
fied to fit any reasonably comprehensive system. There is con- 
siderably more material listed here than car/ normally be covered 
in one semester, so that careful selection of topics should be made 
or the course should be extended to two semesters. 

1. Review of Batch Process Systems Programs. Translation, 
loading, and execution. Loader languages. Communication between 
independent program units. Limitations imposed by binding at pre- 
execution times. Incremental linkage. 

2. Multiprogramming and Multiprocessor Systems. General in- 
ttroduction to the structure of these systems, the techniques in- 
volved in their construction and some of the problems involved in 
their implementation. 

3. Addressing Techniques. Review of indexing and indirect ad- 
dressing. Relocation and base registers. Two-dimensional address- 
ing (segmentation). Segmented processes. Concepts of virtual mem- 
ory. Effective address computation. Modes of access control. 
Privileged forms of accessing. Paging. Physical register (address) 
computation, including use of associative memories. 

4. Process and Data Modules. Concept of a process as a col- 
lection of procedure and data components (segments). Process data 
bases. Controlled sharing of segments among two or more processes. 
Intersegment linking and segment management. Interprocedure 
communication. Process stacks. Levels of isolation within a process 
(rings of protection). 

5. File System Organization and Management. File data bases 
and their storage structures. Accessing, protection and maintenance 
of files. Storage and retrieval of segments and/or pages from files in 
secondary storage (segment and page control, directory control, and 
core management). Search strategies. 

6. Traffic Control. State words. Running, ready, blocked, and in- 
active processes. Process switching. Priority control of waiting 
processes. Scheduling algorithms. Pseudo processes. System tables 
for process management. 

7. Explicit Input-Output References. Auxiliary (secondary) 
memory references. Communication with peripheral devices. Man- 
agement of input-output and other request queues. Effects of data 
rates on queue management. 

8. Public and Private Files. On line and off line memory. AU- 
tomatic shifting of data among devices in the storage hierarchy and 
"flushing" of online memory, i.e. multilevel storage management. 
File backup schemes and recovery from system failures. 

9. Other Topics. Some of the following topics may be studied 
if time permits. They might also be covered in subsequent semi- 

nars. 
a. System accounting for facilities employed by the user. Spe- 

cial hardware features for metering different uses. Accounting for 
system overhead. Factors which determine system overhead. 

b. Characteristics of large systems. Overall discussion of large 
system management including effect of binding times for system 
and user process variables. Other selected topics on large systems 
such as the effect of new hardware components (e.g. mass mem- 
ories) on the overall system design. 

c. Foreground and background processes. Foreground-initiated 

C o m m u n i c a t i o n s  of  t h e  ACM 179 



background processes. Remote job control. Hierarchical job con- 
trol. Broadcasting. 

d. Microprogrammning as an equivalent of various hardware 
and/or software component subprograms in a computing system. 

e. Command languages. Commands of a mult iprogramming sys- 
tem. Command language interpreters. 

f. Provisions fbr dynamic updat ing of the operating system 
without shutdown. 

g. Operating behavior, e.g. system startup, (graceful) degrada- 
tion, and shutdown. 

ANNOTATED BIBLIOGRAPHY 

In addition to the following sources of information, there are 
many manuals  available f}'om manufacturers which describe spe- 
cific systems programs for a wide range of' computers. 

1. CHOROFAS, D. N. Programming Systems for Electronic Com- 
puters. Butterworths, London, 1962, 188 pp. CR-6566-8553. 
Chapters 14, 15, and 16 contain a general discourse o n t h e  con- 
trol and diagnostic functions of operating systems. 

2. CLARK, W. A., MEALY, G. H., AND WITT, B. I. The functional 
structure of OS/360. IBM Syst. J. 5, 1 (1966), 3-51. 
A general description in three parts of the operating system for 
the IBM System/360. Part  I (Mealy), Introductory Survey; 
Part  II (Witt), Job and Task Management ;  and Par t  III (Clark), 
Data Management.  

3. D~SMONDE, W. H. Real-Time Data Processing S~vstems. Intro- 
ductory Concepts. Prentice-Hall, Englewood Cliff's, N. J., 1964, 
192 pp. CR-6562-7236. 
An elementary survey of the design and programming of real- 
t ime data processing systems based on three IBM systems: 
Sabre, Mercury, and Gemini. 

4. ERDWlNN, J. D. (Ch.) Executive control programs--Session 8. 
Proc. AFIPS 1967 Fall Joint  Comput. Conf., Vol. 31, Thompson 
Book Co., Washington, D. C., pp. 201-254. 
Five papers on control programs for a variety of circumstances. 

5. FISCHER, F. P., AND SWINDLE, G. F. Computer Programming 
Systems. Holt, Rinehart  and Winston, New York, 1964, 643 pp. 
CR-6455-6299. 
Sets out to "discuss the entire field of computer programming 
systems," but  in reality considers primarily the systems pro- 
grams for the IBM 1401; "other  computer systems are men- 
tioned only where a particular characteristic of a programming 
system, found on tha t  computer, warrants  discussion." Only 
IBM computer systems and (with a very few exceptions) only 
IBM literature are referenced. 

6. FLORES, I. Computer Software. Prentice-Hall, Englewood 
Cliffs, N. J., 1965, 464 pp. CR-6671-8995. 
Elementary and conversational text primarily concerned with 
assembly systems using FLAP (Flores Assembly Program) as 
its example. Some material on service programs, supervisors 
and loaders. 

7. GLASER, E. (Ch.) A new remote accessed man-machine sys- 
t em-Ses s ion  6. Proc. AFIPS 1965 Fall Joint  Comput. Conf., 
Vol. 27, Pt. 1, Spartan Books, New York, pp. 185-241. (Re- 
prints available from the General Electric Company.) 
Six papers on the MULTICS system. 

8. HE1STAND, R . E .  An executive system implemented as a finite- 
state automaton.  Comm. ACM 7, 11 (Nov. 1964), 669-677. CR- 
6562-7282. 
Describes the executive system for the 473L command and 
control system. The system was considered as a finite autom- 
aton and the author claims this approach forced a modularity 
on the resulting program. 

9. LEONARD, G. F., AND GOODROE, J. R. An environment {'or an 
operating system. Proc. ACM 19th Nat. Conf., 1964, Associa- 
tion fbr Computing Machinery, New York, pp. E2.3-1 to E2.3-11. 
CR-6561-6546. 

An approach to computer utilization involving the extension 

180 C o m m u n i c a t i o n s  of  t h e  ACM 

of the operations of a computer with software so as to provide a 
proper environment for an operating system. 

10. MARTIN, J. Design of Real-Time Computer 5~'stems. Prentice- 
Hail, Englewood Clifi.s, N. J., 1967, 629 pp. 
A general text covering many aspects of real-time data proc. 
essing systems including design, applications, management,  
and operation. 

11. MARTIN, J. Programming Real-Time Computer Systems. Pren- 
tice-Hall, Englewood ClifFs, N. J., 1965, 386 pp. 
Based on some of the early systems such as Sage, Project Mer- 
cury, Sabre, and Panamac.  A general coverage designed for 
managers, systems analysts, programmers, salesmen, students. 

12. MILLER, A. E. (Ch.) Analysis of t ime-shared computer  system 
performance--Session 5. Proc. ACM 22nd Nat. Conf., 1967, 
Thompson Book Co., Washington, D. C., pp. 85-109. 
Three papers on measurement  of t ime-shared system perform- 
ance. 

13. M.I.T. Computation Center. Compatible Time-Sharing Sys- 
tern: A Programmer's Guide, 2nd ed. M.I.T. Press, Cambridge, 
Mass., 1965. 
A handbook on the use of CTSS which contains valuable in- 
formation and guidelines on the implementat ion of such sys- 
tems. 

14. Project MAC. MUL TICS S~,stem Programmer's Manual. 
Project MAC, M.I.T., Cambridge, Mass., 1967, (limited distrib- 
ution). 
A description of and guide to systems programming for MUL- 
TICS. 

15. ROSEN, S. (Ed.) Programming Systems and Languages. Me- 
Graw-Hill, New York, 1967, 734 pp. 
Collection of impor tan t  papers in the area of which Part  5 
(Operating Systems) is particularly relevant to this course. 

16. ROSENBERO, A. M. (Ch.) Program structures for the multipro- 
gramming environment--Session 6A. Proc. ACM 21st Nat. 
Conf., 1966, Thompson Book Co., Washington, D. C., pp. 223- 
239. 
Two papers: one on program behavior under  paging; the other 
on analytic design of look-ahead and program segmenting sys- 
tems. 

17. ROSENBERG, A. M. (Ch.) Time-sharing and on-line systems-- 
Session 7. Proc. ACM 22nd Nat. Conf., 1967, Thompson Book 
Co., Washington, D. C., pp. 135-175. 
Three papers on various topics related to the subject. 

18. SALTZER, J. H. Traffic control in a multiplexed computer 
system. M.I.T. Ph.D. Thesis, June  1966. (Also available as 
Project MAC publication MAC-TR-30.) 
On traffic control in the MULTICS system. 

19. SMrrH, J. W. (Ch.) Time-shared scheduling--Session 5A. Proc. 
ACM 21st Nat.  Conf., 1966, Thompson Book Co., Washington, 
D. C., pp. 139-177. 

Four papers on t ime-sharing which are more general than the 
session title indicates. 

20. THOMPSON, a .  N., AND WILKINSON, J. A. The D825 automatic 
operating and scheduling program. Proc. AFIPS 1963 Spring 
Joint  Comput. Conf., Vol. 23, Spar tan  Books, New York, pp. 
41-49. CR-6453-5699. 
A general description of an executive system program for han- 
dling a multiple computer system tied to an automat ic  input- 
output  exchange containing a number  of input -output  control 
modules. Discusses many of the problems encountered in such 
systems and the general plan of a t tack in solving these prob- 
lems. 

21. WEGNER, P. (Ed.) Introduction to System Programming. Aca- 
demic Press, New York, 1965, 316 pp. CR-6455-6300. 
Contains a collection of papers of which the following are of 
special interest  for this course: Gill, pp. 214-226; Howarth, 
pp. 227-238; and Nash, pp. 239-249. 

V o l u m e  l l  / N u m b e r  3 / M a r c h ,  t968 



Course I5 .  Compiler Construction (3-0-3) 

APPROACH 

This course is to emphasize the techniques involved in the 
analysis of source language and the generation of efficient object 
code. Although some theoretical topics must be covered, the course 
should have the practical objective of teaching the student how 
compilers may be constructed. Programming assignments should 
consist of implementations of components of a compiler and possi- 
bly the design of a simple but complete compiler as a group project. 

CONTENT 

There is probably more material listed here than can reasonably 
be covered, so some selection will be necessary. 

1. Review of' assembly techniques, symbol table techniques, and 
macros. Review of syntactic analysis and other Iorms of program 
recognition. Review of compilation, loading, and execution with 
emphasis on the representation of programs in the loader language. 

2. One pass compilation techniques. Translation of arithmetic 
expressions from postfix form to machine language. Efficient use of 
registers and temporary storage. 

3. Storage allocation for constants, simple variables, arrays, tem- 
porary storage. Function and statement procedures, independent- 
block structure, nested block structure, and dynamic storage allo- 
cation. 

4. Object code for subscripted variables, storage mapping func- 
tions, and dope vectors. Compilation of sequencing statements. 

5. Detailed organization of a simple complete compiler. Symbol 
tables. Lexical scan on input (recognizer), syntax scan (analyzer), 
object code generators, operator and operand stacks, output sub- 
routines, and error diagnostics. 

6. Data types, transfer functions, mixed mode expressions and 
statements. 

7. Subroutine and function compilation. Parameters called by 
address, by name and by value. Subroutines with side effects. Re- 
strictions required for one pass execution. Object code for trans- 
mission of parameters. Object code for subroutine body. 

8. Languages designed for writing compilers: TMG (McClure), 
COGENT (Reynolds), GARGOYLE (Garwick), META II (Schorre), 
and TGS-II (Cheatham). 

9. Bootstrapping techniques. Discussion of a meta-compiler in 
its own language. 

10. Optimization techniques. Frequency analysis of use of pro- 
gram structures to determine most important features for optimiza- 
tion. 

11. Local optimization to take advantage of special instructions. 
Loading registers with constants, storing zeros, changing sign, 
adding to memory, multiplication or division by two, replacement 
of division with multiplication by a constant, squaring, raising to 
integer powers, and comparing to zero. Subscript optimization. 

12. Expression optimization. Identities involving minus signs, 
common subexpression evaluation and other techniques. Minimiza- 
tion of' temporary storage and the number of arithmetic registers 
in multiple register machines. 

13. Optimization of loops. Typical loops coded several ways. In- 
dex register optimization in the innermost loop. Classification of 
loops for optimization purposes. 

14. Problems of global optimization. Determination of flowchart 
graph of' program. Analysis of" program graphs. Rearrangement of 
computation to do as little as possible in innermost loop. Factoring 
of invariant subexpressions. Object code for interfaces between 

Glow blocks. 

ANNOTATED BISLIOGRAPH* 

1. ACM Compiler Symposium. Papers presented at the ACM 
Compiler Symposium, November 17-18, 1960, Washington, 
D. C., Comm. A C M 4 ,  1 (Jan. 1961), 3-84. 

Vo lume  II / N u . n b e r  3 / March ,  1968 

Contains a number of relevant papers including one by R. W. 
Floyd entitled "An Algorithm for Coding Efficient Arithmetic 
Operations" and one by P. Z. Ingerman on "Thunks." 

2. ARDEN, B. W., GALLER, B. A., AND GRAHAM, R. M. An algo- 
rithm fbr translating Boolean expressions. J. A C M  9, 2 (Apr. 
1962), 222-239. CR-6341-3567. 
Description of code generation in the MAD Compiler. 

3. BRINCH-HANSEN, P., AND HOUSE, R. The COBOL compiler for 
the Siemens 3003. BIT6,  1 (1966), 1-23. 
Describes the design of a ten-pass compiler with extensive 
error detection. 

4. CHEATHAM, W. E., JR. The TGS-II translator generator sys- 
tem. Proc. IFIP Congress, New York, 1965, Vol. 2, Spartan 
Books, New York, pp. 592-593. 
A report on the "current position" of Computer Associates 
"translator generator system." 

5. CHEATHAM, W. E., JR. The Theory and Construction of Com- 
pilers. Document CA-6606-0111, Comp, :er Associates, Inc., 
Wakefield, Mass., June 2, 1966, limited distribution. 
Notes for course AM 295 at Harvard, fall 1967. 

6. CHEATHAM, T. E., JR., AND SATTLEY, K. Syntax-directed com- 
piling. Proc. AFIPS 1964 Spring Joint Comput. Conf., Vol. 25, 
Spartan Books, New York, pp. 31-57. CR-6455-6304. 
An introduction to top-down syntax directed compilers. 

7. CONWAY, M. E. Design of a separable transition-diagram 
compiler. Comm. A C M  6, 7 (July 1963), 396-408. CR-6451-5024. 
Describes the organization of a COBOL compiler. The methods 
are largely applicable to construction of compilers for other 
languages such as ALGOL. 

8. CONWAY, R. W., AND MAXWELL, W. L. CORC--the Cornell 
computing language. Comm. A C M  6, 6 (June 1963), 317-321. 
Description of a language and compiler which are designed to 
provide extensive error diagnostics and other aids to the pro- 
grammer. 

9. ERSHOV, A . P .  ALPHA--an automatic programming system of 
high efficiency. J. A C M  13, 1 (Jan. 1966), 17-24. CR-6673-9720. 
Describes a compiler ibr a language which includes most of 
ALGOL as a subset. Several techniques for optimizing both 
the compiler and the object code are presented. 

10. ERSHOV, A. P. Programming Programme for the B E S M  com- 
puter, transl, by M. Nadler. Pergamon Press, New York, 1959, 
158 pp. CR-6235-2595. 
One of the earliest works on compilers. Introduced the use of 
stacks and the removal of common subexpressions. 

11. ERSHOV, A. P. On programming of arithmetic operations. 
Comm. A C M  I, 8 (Aug. 1958), 3-6 and 9 (Sept. 1958), 16. 
Gives an algorithm for creating rough machine language in- 
structions in pseudofbrm and then altering them into a more 
efficient form. 

12. FREEMAN, D . N .  Error correction in CORC. Proc. AFIPS 1964 
Fall Joint Computer Conf., Vol. 26, Part I, Spartan Books, New 
York, pp. 15-34. 
Discusses techniques of correcting errors in programs written 
in the Cornell computing language. 

13. GARWICK, J. V. GARGOYLE, a language for compiler writing. 
Comm. A C M  7, 1 (Jan. 1964), 16-2.0. CR-6453-5675. 
Describes an ALGoL-like language which uses syntax-directed 
methods. 

14. GEAR, C. W. High speed compilation of efficient object code. 
Comm. A CM 8, 8 (Aug. 1965), 483-488. CR-6671-9000. 
Describes a three-pass compiler which represents a compro- 
mise between compilation speed and object code efficiency. 
Primary attention is given to the optimization performed by 
the compiler. 

C o m m u n i c a t i o n s  of  t i le  ACM 181 



15. GRIES, D., PAUL, M., ANn WIEHLE, H . R .  Some techniques used 
in the ALCOR ILLINOIS 7090. Comm. ACM 8, 8 (Aug. 1965), 
496 500. CR-6566-8556. 

Describes portions of an ALGOL compiler for the IBM 7090. 

16. HAWKINS, E. N., AND HUXTABLE, D. H. R. A multipass trans- 
lation scheme for ALGOL 60. In R. Goodman (Ed.), Annual Re- 
view in Automatic Programming, Vol. 3, Pergamon Press, New 
York, 1963, pp. 163-206. 

Discusses local and global optimization techniques. 

17. HORWITZ, L. P., KARP, R. M., MILLER, R. E., AND WINOGRAD, S. 
Index register allocation. J. ACM I3, 1 (Jan. 1966), 43-61. CR- 
6674-10,068. 

A mathematical  t rea tment  of the problem. Useful in compiler 
writing. 

18. International Computat ion Centre (Eds.) Symbolic Languages 
in Data Processing, Proceedings of the Symposium in Rome, 
March 26-31, 1962. Gordon and Breach, New York, 1962, 849 pp. 

The twelve papers listed under "Construction of Processors 
for Syntactically Highly Structured Languages" in this volume 
are particularly of interest for this course. 

19. KNUTH, D . E .  A history of writing compilers. Comput. Autom. 
II, 12 (Dec. 1962), 8-18. 

Describes some of the early techniques used in writing Ameri- 
can compilers. 

20. McCLURE, R. M. T M G - - a  syntax directed compiler. Proc. 
ACM 20th Nat. Conf., 1965, Association for Computing Ma- 
chinery, New York, pp. 262-274. 

The compiler writing system described in this paper was de- 
signed to facilitate the construction of simple one-pass trans- 
lators for some specialized languages. It has features which 
simplify" the handling of declarative information and errors. 

21. NAUR, P. The design of the GIER ALGOL compiler. In R. 
Goodman (Ed.), Annual Review in Automatic Programming, 
Vol. 4, Pergamon Press, New York, 1964, pp. 49-85. CR-6564- 
7904. 

Describes a mult ipass compiler written for a computer with a 
small high-speed memory. 

22. RANDELL, B., AND RUSSELL, L . J .  ALGOL 60 Implementation. 
Academic Press, New York, 1964, 418 pp. CR-6565-8246. 
Contains a survey of ALGOL implementat ion techniques and a 
description of an error checking and debugging compiler for 
the KDF9 computer. 

23. REYNOLDS, J. C. An introduction to the COGENT program- 
ming system. Proc. ACM 20th Nat. Conf.; 1965, Association for 
Computing Machinery, New York, pp. 422-436. 
Describes the structure and major facilities of a compiler- 
compiler system which couples the notion of syntax-directed 
compiling with tha t  of recursive list processing. 

24. ROSEN, S. (Ed.) Programming Systems and Languages. Mc- 
Graw-Hill, New York, 1967, 734 pp. 

A collection of papers of which the following are of special in- 
terest for this course: Backus, et al., pp. 29-47; Bauer and 
Samelson, pp. 206-220; Dijkstra, pp. 221-227; Kanner,  K0sin- 
ski, and Robinson, pp. 228-252; Rosen, Spurgeon, and Don- 
nelly, pp. 264-297; and Rosen, pp. 306-331. 

25. SCI-IOREE, D. V. META II, a syntax-oriented compiler writing 
language. Proc. ACM 19th Nat. Conf., 1964, Association for 
Computing Machinery, New York, pp. D1.3-1 to D1.3-11. CR- 
6561-6943. 

Describes a compiler writing language in which its own com- 
piler can be written. 

26. WEGNER, P. (Ed.) Introduction to System Programming. Aca- 
demic Press, New York, 1965, 316 pp. CR-6455-6300. 
Contains a collection of papers of which the following are of 
special interest fbr this course: Pyle, pp. 86-100; Wegner, pp. 
101-121; Randell, pp. 122-136; Huxtable, pp. 137-155; Hoare, 
pp. 156-165; and d'Agapeyeff, pp. 199-214. 

Course I6. Switching Theory (3-0-3) or (2-2-3) 

APPROACH 

This course should present the theoretical foundations and 
mathemat ical  techniques concerned with the design of' logical cir- 
cuits. Examples should be chosen to illustrate the applicability 
to computers or other digital systems whenever possible. Facility 
with Boolean algebra and appreciation for the effects of delays 
should be developed. Some laboratory experiments are highly de- 
sirable. 

CONTENT 

1. Review of' nondecimal number  systems. Introduction to unit- 
distance, error-correcting, and other codes. 

2. Development of switching algebra and its relation to Boolean 
algebra and propositional logic. Brief discussion of switching ele- 
ments  and gates. Analysis of gate networks. Tru th  tables and com- 
pleteness of connectives. 

3. Simplification of combinational networks. Use of map and 
tabular  techniques. The prime implicant  theorem. Threshold logic. 

4. Different modes of sequential circuit operation. Flow table, 
s tate diagram, and regular expression representations. Clocked cir- 
cuits. Flip-flop and feedback realizations. 

5. Synthesis of sequential circuits. State minimizat ion and in- 
ternal variable assignments for pulse and fundamenta l  mode cir- 
cults. Race considerations. Iterative and symmetric networks. 

6. Effects of delays. Static, dynamic, and essential hazards. 

ANNOTATED BIBLIOGRAPHY 

As is indicated, several of the books listed below could be used 
as texts for this course, but  it probably would be desirable to sup- 
plement  any of them with additional material.  

General textbooks 
1. CALDWELL, S. H. Switching Circuits and Logical Design. 

Wiley, New York, 1958, 686 pp. 
The classic book on relay-oriented switching theory. 

2. HARRISON, M. A. Introduction to Switching and Automata 
Theory. McGraw-Hill, New York, 1965, 499 pp. CR-6671-9109. 

A mathemat ical  and abstract  reference for advanced topics. 

3. HIGONNET, R. A., AND GREA, R .A .  Logical Design of Electrical 
Circuits. McGraw-Hill, New York, 1958, 220 pp. 

Almost exclusively devoted to relay networks. 

4. HUMPHREY, W. S., JR. Switching Circuits with Computer Ap- 
plications. McGraw-Hill, New York, 1958, 264 pp. 
A somewhat out-of-date undergraduate level text. 

5. KRIEGER, M. Basic Switching Circuit Theory. Macmillan, 
New York, 1967, 256 pp. CR-6784-12,510. 
Basic elementary t rea tment  which does not discuss hazards or 
codes. 

6. McCLUSKEY, E. J., JR. Introduction to the Theory of Switch- 
ing Circuits. McGraw-Hill, New York, 1965, 318 pp. CR-6673- 
9834. 
A possible text for this course. 

7. McCLUSKEY, E. J., JR., AND BARTEE', T. C. (Eds.) A Survey o[ 
Switching Circuit Theory. McGraw-Hill, New York, 1962, 205 
pp. CR-6342-3958. 
A collection of papers: Weak as a text since there are no prob- 
lems. Possibly of some value as reading to il lustrate different 
approaches. 

8. MALEY, G. A., AND EARLE, J. The Logic Design of Transistor 
Digital Computers. Prentice-Hall,  Englewood Clifl~, N. J., 
1963, 322 pp. CR-6345-4582. 
Despite its title, this book covers a considerable amount  of 
switching theory. Emphasis  is on NOR circuits and  asynchron- 
ous systems, and on techniques rather  than theorems. Numer- 
ous examples. 

182 C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 



9. MARCUS, M. P. Switching Circuits for Engineers. Prentice- 
Hall, Englewood Cliffs, N. J., 1962, 296 pp. CR-6341-3681. 

Broad but  not too mathemat ical  coverage of' switching theory. 

10. MU, LEt~, R. E. Switching Theory, Vol. i, Combinational Cir- 
cuits. Wiley, New York, 1965, 351 pp. CR-6565-8369. 

Highly mathemat ical  and somewhat advanced for an under- 
graduate course. Interesting discussion of the effects of delays. 

11. PRATHr~R, R. E. Introduction to Switching Theory: A Mathe- 
matical Approach. Allyn and Bacon, Boston, 1967, 496 pp. 

A highly mathematical  and broad coverage of both combina- 
torial switching theory and sequential machine theory. 

12. TORNG, H . C .  Introduction to the Logical Design of Switching 
Systems. Addison-Wesley, Reading, Mass., [965, 286 pp. CR- 
6456-6806. 
General elementary coverage including a discussion of switch- 
ing elements and magnetic logic. Outmoded discussion of iter- 
ative (cascaded) networks. Many computer-related examples. 

13. WARrIELD, J. N. Principles of Logic Design. Ginn and Co., 
Boston, 1963, 291 pp. CR-6451-5136. 
Covers some elementary switching theory in the context of 
computer logic. 

More specialized books 
14. CURTIS, V. A. A New Approach to the Design of Switching 

Circuits. D. Van Nostrand, Princeton, N. J., 1962, 635 pp. CR- 
6346-4818. 
Devoted mainly to decomposition theory for combinational cir- 
cuits. Useful as a reference in this area and as a source of ex- 
amples since it contains many detailed sample problems. 

15. DERTOUZOS, M. I,. Threshold Logic: A Synthesis Approach. 
M.I.T. Press, Cambridge, Mass., 1965, 256 pp. CR-6676-10,929. 
Concentrates on the characterization and application of thres- 
hold elements in terms of logical design. 

16. Hu, S. T. Threshold Logic. University of California Press, 
Berkeley, Calif., 1965, 338 pp. 
A comprehensive reference which also contains some of the 
author 's  original research. 

17. LEwis, P. M., ANn COATES, C. L. Threshold Logic. Wiley, 
New York, 1967, 483 pp. 
Emphasizes single and multigate networks for controlled sen 
sitivity. 

18. PHISTER, M., JR. Logical Design of Digital Computers. Wiley, 
New York, 1958, 401 pp. 
Covers the application of sequential circuit theory to design of 
computer logic. Considers only clocked circuits and (for the 
most part) serial operation. 

Course I7. Sequential Machines (3-0-3) 

APPROACH 

This is to be a rigorous theoretical course. The material  is about 
evenly devoted to three major points of view: the structural aspects 
of' sequential machines, the behavioral aspects of' sequential ma- 
chines, and the variants  of finite automata.  Machines with un- 
bounded storage such as Turing machines and pushdown-store au- 
tomata are to be covered in course A7. 

CONTENT 

1. Definition of finite automata  and sequential machines. Various 
methods of representing automata  including State tables, state dia- 
grams, set theoretic methods, and sequential nets. (3 lectures) 

2. Equivalent states and equivalent machines. Reduction of 
states in sequential machines. (3 lectures) 

3. Right-invariant and congruence relations. The equivalence of 
nondeterministic and deterministic finite automata.  Closure prop- 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 

erties of languages definable by finite automata and the Kleene- 
Myhill theorem on regular languages. (4 lectures) 

4. Decision problems of finite automata.  Testing equivalence, 
acceptance of a nonempty set, acceptance of an infinite set. (3 lec- 
tures) 

5. Incomplete sequential machines. Compatible states and algo- 
r i thms for constructing minimal state incomplete sequential ma- 
chines. (3 lectures) 

6. The state assignment problem. Series-parallel decomposi- 
tions. Coordinate assignments. (2 lectures) 

7. Algebraic definition of a sequential machine. Homomorphisms 
of monoids. (2 lectures) 

8. Partitions with the substitution property. Homomorphism de- 
compositions into a series-composition. (2 lectures) 

9. Decomposition of permutation automata.  (1 lecture) 
10. The decomposition of finite-state automata into a cascade of 

permutation-reset automata  using the method of set systems 
(covers). (2 lectures) 

11. Final series-parallel decomposition into .a cascade of two- 
s tate  automata and simple-group automata.  (2 lectures) 

12. Brief introduction to undecidability notions. The halting 
problem. (2 lectures) 

13. Multi tape nonwriting automata.  (4 lectures) 
14. Generalized sequential machines. (2 lectures) 
15. Subsets of regular languages. Group-free automata.  (3 lec- 

tures) 
16. Regular expressions. Algebra, derivatives and star height. (5 

lectures) 
17. Probabilistic automata.  (3 lectures) 

ANNOTATED BIBLIOGRAPHY 

Except for two survey articles, only books are included in the 
following list. Since this field has developed within the last fifteen 
years, much of the material is still in the periodical literature. 

1. CAIANIELLO, E. R. (Ed.) Automata Theory. Academic Press, 
New York, 1966, 343 pp. CR-6676-10,935. 
A collection of research and tutorial papers on automata,  for- 
mal languages, graph theory, logic, algorithms, recursive func- 
tion theory, and neural nets, which, because of varying interest 
and difficulty, might be useful for supplementary reading by 
ambitious students. 

2. FISCHER, P. C. Multi tape and infinite-state au tomata- -a  sur- 
vey. Comm. ACM8, 12 (Dec. 1965), 799-805. CR-6675-10,561. 
A survey of machines which are more powerful than finite au 
tomata and less powerful than Turing machines. Also an ex- 
tensive bibliography. 

3. GILL, A. Introduction to the Theory of Finite-State Machines. 
McGraw-Hill, New York, 1962, 207 pp. CR-6343-4207. 
An automata theory approach to finite-state machines which 
is somewhat engineering oriented and written at a fairly ele- 
mentary level. 

4. GINSBURG, S. An Introduction to Mathematical Machine 
Theory. Addison-Wesley, Reading, Mass., 1962, 137 pp. CR- 
6452-5431. 
A text on the behavior of the sequential machines of Huff: 
man-Moore-Mealy, abstract  machines of Ginsburg, and tape 
recognition devices of Rabin and Scott. 

5. GLUSHKOV, V. M. Introduction to Cybernetics, transl, by 
Scripta Technica, Inc. Academic Press, New York, 1966, 324 pp. 
A translation of the Russian text which assumes only a limited 
background. Approaches subject from somewhat different point 
of view than most Western texts. Contains much relevant ma- 
terial. 

6. HARRISON, M. Introduction to Switching and Automata 
Theory, McGraw-Hill, New York, 1965, 499 pp. CR-6671-9109. 
This text for engineers and mathematicians develops the 
foundations of both switching and automata theory in abstract 

C o m m u n i c a t i o n s  of  t i le  ACM 183 



mathemat ica l  terms. Emphasis  is on switching theory. Coverage 
includes sequential machines, regular events, definite events, 
probabilistie machines, and context-free languages. 

7. HARTMANIS, J., AND STEARNS, R. E. Algebraic Structure 
Theot F' of Sequential Machines. Prentice-Hall,  Englewood 
Clifl~s, N. J.. 1966, 211 pp. CR-6782-11,635. 

The first thorough t rea tment  of the structure theory of se- 
quential  machines and its applications to machine synthesis 
and machine decomposition. A research monograph selected 
from a series of papers by the authors and not written as a text. 
Practically no exercises. 

8. HENNIE, F. C., III. lterative Arrays of Logical Circuits. M.I.T. 
Press, Cambridge, Mass., and Wiley, New York, 1961, 242 pp. 
CR-6232 1733. 

Currently the most complete treatise on iterative arrays. 

9. KaUTZ, W. H. (Ed.) Linear Sequential Switching Circuits-- 
Selected Technical Papers. HoldemDay, San Francisco, 1965, 
234 pp. CR-6674-10,205. 

A collection of papers on linear sequential machines. 

10. McNAuGtITON, R. The  theory of au tomata - - a  survey. In F. L. 
Alt (Ed.), Aduances in Computing, Vol. 2, Academic Press, New 
York, 1961, pp. 379-421. CR-6342-3920. 

Most of the areas of au tomata  theory are included with the ex- 
ception of switching theory and other engineering topics. 

11. MIL, LER, R. E. Switching Theory, Vol. 2, Sequential Circuits 
and ~VIachines. Wiley, New York, 1965, 250 pp. CR-6783-12,120. 
Highly mathematical  and somewhat advanced as a text for an 
undergraduate course. 

12. MINSKY, M. Computation: bYnite and Infinite Machines. Pren- 
tice-Hall, Englewood Cliffs, N. J., 1967, 317 pp. 

The concept of an "effective procedure" is developed in this 
text. Also treats algorithms, Post productions, regular expres- 
sions, computability, infinite and finite-state models of digital 
computers, and computer languages. 

13. MOORE, E. F. (Ed.) Sequential Machines: Selected Papers. 
Addison-Wesley, Reading, Mass., 1964, 266 pp. 
This collection of classical papers on sequential machines in- 
cludes an extensive bibliography by the editor. 

14. PRATHER, R. E. Introduction to Switching Theory: A Mathe- 
matical Approach. Allyn and Bacon, Boston, 1967, 496 pp. 

A mathematical  and broad t rea tment  of both combinatorial 
switching theory and sequential machines. 

15. SHANNON, C. E., AND McCARTHY, J. (Eds.) Automata Studies. 
Princeton University Press, Princeton, N. J., 1956, 285 pp. 

A collection of many of the early papers  on finite automata,  
Turing machines, and synthesis of au tomata  which st imulated 
the development of' au tomata  theory. Philosophical papers, in 
addition to mathemat ical  papers, are included, since the aim of 
the collection is to help explain the workings of the human  
mind. 

Courses 18 and I9 .  Numerical Analysis I and II 
(3-0-3)  and (3-0-3)  

APPROACH 

The numerical methods presented in these courses are to be de- 
veloped and evaluated from the s tandpoint  of efficiency, accuracy, 
and suitability for high-speed digital computing. While other ar- 
rangements of the material in these courses are possible, the ones 
suggested here do allow the two courses to be taught  independently 
of' one another. 

CONTENT OF COURSE 1r8 

1. Solution of Equations. Newton's method and other iterative 
methods for solving systems of equations. Aitken's a2 process. 
Newton-Bairstow method. Muller 's method and Bernoulli 's method 

184 C o m m u n i c a t i o n s  of  t h e  ACM 

fbr polynomial equations. Convergence conditions and rates of con- 
vergence for each method. 

2. Interpolation and Approximation. Polynomial interpolation. 
Lagrange's method with error fbrmula. Gregory-Newton and other 
equal interval interpolation methods. Systems of orthogonal poly- 
nomials. Least-squares approximation. Trigonometric approxima- 
tion. Chebyshev approximation. 

3. Numerical Differentiation and Quadrature. Formulas involv- 
ing equal intervals. Romberg integration. Extrapolation to the limit. 
Gaussian quadrature.  

4. Solution o[ Ordinary Differential Equations. Runge Kutta 
methods. Multistep methods. Predictor-corrector methods. Stahility. 

CONTENT OF COURSE "[9 

5. Linear Algebra. Rigorous t rea tment  of' el imination methods 
and their use to solve linear systems, invert  matrices, and evaluate 
determinants .  Compact schemes. Methods tbr solving the eigen- 
value-eigenvector problem including the power method, the in 
verse power method, Jaeobi 's  method, Givens' method and House- 
holder's method. Roundoff analysis and conditioning. 

6. Numerical Solution of Boundary Value Problems in Ordinary 
Differential Equations. 

7. Introduction to the Numerical Solution of Partial Differential 
Equations. Computat ional  aspects of finite dift~rence methods fbr 
linear equations. Determinat ion of grids. Derivation of difference 
equations. Solution of large linear systems by iterative methods such 
as simultaneous displacements, successive displacements, and suc- 
cessive overrelaxation. 

ANNOTATED BIBLIOGRAPHY 

Listed below are some but  by no means all of the books which 
could be used as texts and/or  referenees tbr these courses. The more 
general texts normally include solution of polynomial and other 
nonlinear equations; interpolation, numerical  quadrature,  and nu- 
merical differentiation; ordinary differential equations; and linear 
algebra. Significant deviations from these are indicated by the an- 
notations. 

Besides listing books which might be used as texts for part  or all 
of these courses, the following includes books for those desiring to 
go deeper into the various areas. In particular, Refs. 1, 3, 10, 17, and 
18 have been included for linear algebra; Refs. 2 and 16 for partial 
differential equations; Ref. 15 for the solution of nonlinear equa- 
tions; and Ref. 7 for ordinary differential equations. 

1. FADDEEV, D. K., AND FADDEEVA, V. N. Computational Meth- 
ods o[ Linear Algebra, transl, by R. C. Williams. W. H. Free- 
man, San Francisco, 1963, 621 pp. CR-6016-0374. 
An excellent reference on the theory of computat ional  methods 
in linear algebra. Does not t reat  the theory of computational 
errors. Introductory chapter  could serve as a text for a course in 
linear algebra. Beginning analysis and an elementary knowledge 
of complex variables is assumed. Examples but  no exercises. 

2. FORSYTHE, G. E., AND WASOW, W. R. Finite-Difference Meth- 
ods [or Partial Differential Equations. Wiley, New York, 1960, 
444 pp. 
A fundamenta l  reference on the numerical solution of partial 
differential equations by finite-difference methods. Provides a 
thorough t rea tment  of hyperbolic, parabolic, and elliptic equa- 
tions. Orientation is toward the use of high-speed computers, 
but it is not intended as a guide for programmers. For most of 
the book, advanced calculus and linear algebra provide sufficient 
background. Previous knowledge of partial  differential equa- 
tions not required. Some illustrative examples but  no exercises. 

3. Fox, L. An Introduction to Numerical Linear Algebra. Oxford 
University Press, New York, 1964, 295 pp. CR-6456-6723. 
A basic reference on computational methods in linear algebra, 
Designed tbr engineers and scientists as well as mathematicians.  
Emphasis  on the principles involved rather  than the details of 
applications to computers. Intended to prepare the reader for a 
more advanced book such as Wilkinson's The Algebraic Eigen- 
value Problem. Introductory chapter on matrix algebra. Illus- 
trative examples and exercises. 

V o l u m e  11 / N n m b e r  3 / M a r c | l ,  1968 

il 

ii 



4. FROBER(;, C. E. h~troduction to Numerical Analysis. Addison- 
Wesley, Reading, Mass., 1965, 340 pp. CR-6671 9037. 
Designed as a text for an uadergraduate numerical analysis 
course. Includes, in addition to the standard topics, partial 
differential equations (briefly), approximation by Chebyshev 
polynomials and other functions, Monte Carlo methods, and 
linear programming. Emphasis on modern methods well-adapted 
for computers. Mathematically rigorous treatment with detailed 
error analysis given in typical cases. Presupposes differential 
and integral calculus and differential equations. Illustrative 
examples and exercises. 

5. HAMMINC, R . W .  Numerical Methods [or Scientists and Engi- 
neers. McGraw-Hill, New York, 1962, 411 pp. CR-6236-3367. 
Excellent as a reference. Provides interesting and different point 
of view. Treats interpolation and approximation; numerical 
differentiation and integration; and ordinary differential equa- 
tions by polynomial and other methods such as Fourier methods, 
and exponentials. Brief treatments of nonlinear equations and 
linear algebra, simulation, and Monte Carlo methods. Presup- 
poses beginning analysis, Fourier series, mathematical statis- 
tics, feed-back circuits, noise theory. Illustrative examples and 
exercises. 

6. HENRICI, P. Elements of Numerical Analysis. Wiley, New York, 
1964, 328 pp. 

Designed as a text for a one-semester course in numerical analy- 
sis. Covers the standard topics except linear algebra. Emphasis 
on numerical analysis as a mathematical discipline. A distinc- 
tion is made between algorithms and theorems. Introductory 
chapters on complex variables and difference equations. Be- 
ginning analysis (12 semester hours) and ordinary differential 
equations are assumed. Illustrative examples and exercises. 

7. HENnml, P. Discrete Variable Methods in Ordinary Differ- 
ential Equations. Wiley, New York, 1962, 407 pp. CR-6341- 
3733. 
A basic reference on the numerical methods for solving ordinary 
differential equations. Designed as a text for a senior-level 
course on ordinary differential equations. Includes a mathemati- 
cally rigorous treatment of various methods. Emphasis is on the 
study of discretization errors and round-off errors. Presupposes 
differential equations, advanced calculus, linear algebra, and 
elementary complex variables (though large parts of the book 
do not require all of these topics). Illustrative examples and 
exercises. 

8. HmDEBnAND, F. B. Introduction to Numerical Analysis. Mc- 
Graw-Hill, New York, 1956, 511 pp. 
A good book for supplementary reading though written in 1956. 
Gives primary emphasis to methods adapted for desk calculators. 
Includes standard topics except for linear algebra. Separate 
chapters on least-squares, polynomial approximation, Gaussian 
quadrature, and approximation of various types. Beginning 
analysis sufficient background for most of the book. An exten- 
sive set of exercises. 

9. HOUSEHOLDER, A. S. Principles of Numerical Analysis. Mc- 
Graw-Hill, New York, 1953, 274 pp. 
Good /'or supplementary reading. Designed as mathematical 
textbook rather than a compendium of computational rules. 
Published in 1953, the book includes many methods applicable 
only to hand computation though it was written with computers 
in mind. Includes the standard topics except ordinary differen- 
tial equations. Presupposes beginning analysis plus some knowl- 
edge of probability and statistics. Some exercises. 

10. HOUSEHOLDEr, A. S. The Theory of Matrices in Numerical 
Analysis. Blaisdell, New York, 1964, 257 pp. 
Good fbr supplementary reading. Considers the development 
and appraisal of computational methods in linear algebra from 
the theoretical point of view. Does not develop specific com- 
puter flowcharts or programs. Presupposes a knowledge of 
matrix algebra. Illustrative examples and exercises. 

11. ISAACSON, E., AND KELLER, H. B. Analysis of Numerical Meth- 
ods. Wiley, New York, 1966, 541 pp. CR-6783-11,966. 
A very well written and rather comprehensive text presenting a 

careful analysis of numerous important numerical methods with 
a view toward their applicability to computers. With an appro- 
priate selection of material the book lends itself well to use as a 
text; otherwise, it is an excellent reference. 

12. MmNE, W. E. Numerical Solution of Differential Equations. 
Wiley, New York, 1953, 275 pp. 

Since it was written in 1953, much of this material has been 
superseded by more recent work; yet it remains very suitable 
for supplemental reading. Ordinary and partial differential 
equations are treated as well as some problems in linear al- 
gebra. Many of the methods are adapted for hand computation 
rather than fbr computers. Beginning analysis should provide 
sufficient background tor most of the book. Illustrative examples 
and some exercises. 

13. RALSTON, A. A First Course in Numerical Analysis. McGraw- 
Hill, New York, 1965, 578 pp. CR-6671-9035. 
Designed as a text for a one-year course in numerical analysis 
(though not all of the material could be covered) to be taken 
by graduate students and advanced undergraduate students, 
primarily in mathematics. Although numerical analysis is 
treated as a full-fledged branch of applied mathematics, ori- 
entation is toward the use of digital computers. Basic topics in 
numerical analysis covered thoroughly. Separate chapters de- 
voted to functional approximation by least-squares techniques 
and by minimum-maximum error techniques. Presupposes 
beginning analysis, advanced calculus, orthogonal polynomials, 
and complex variables. A course in linear algebra is assumed 
for the chapters in that area. An extensive set of illustrative 
examples and exercises. 

14. TODD, J. (Ed.) A Survey of Numerical Analysis. McGraw- 
Hill, New York, 1962, 589 pp. CR-6236-3368. 
Written by a number of authors. Some of the early chapters 
have been used in connection with introductory courses. Be- 
cause of its breadth of coverage it is especially suited as a 
reference ibr these courses. Besides the usual topics, there are 
separate chapters on orthogonalizing codes, partial differential 
equations, integral equations, and problems in number theory. 
The prerequisites vary with the chapters but for early chapters 
beginning analysis and linear algebra would suffice. Exercises 
given in some of the early chapters. 

15. TRAUB, J. F. Iterative Methods for the Solution of Equations. 
Prentice-Hall, Englewood Cliffs, N. J., 1964, 310 pp. CR-6672- 
9339. 
A good reference on the numerical solution of equations and 
(briefly) systems of equations by iteration algorithms. The 
methods are treated with rigor, though rigor in itself is not the 
main object. Contains a considerable amount of new material. 
Many illustrative examples. 

16. VARGA, RICHARD. Matrix Iterative Analysis. Prentice-Hall, 
Englewood Cliffs, N. J., 1962, 322 pp. CR-6343-4236. 
An excellent reference giving theoretical basis behind methods 
for solving large systems of linear algebraic equations which 
arise in the numerical solution of partial differential equations 
by finite-difference methods. Designed as a text for a first-year 
graduate course in mathematics. 

17. WILKINSON, J. H. Rounding Errors in Algebraic Processes. 
Prentice-Hall, Englewood Cliffs, N. J., 1964, 161 pp. CR-6455- 
6341. 
Studies the cumulative effect of rounding errors in computations 
involving large numbers of arithmetic operations performed by 
digital computers. Special attention given to problems involv- 
ing polynomials and matrices. A very important reference for a 
computer-oriented course in numerical analysis. 

18. WILKINSON, J . H .  The Algebraic Eigenvalue Problem. Claren- 
don Press, Oxford, England, 1965, 662 pp. 
A basic reference on computational methods in linear algebra. 
Provides a thorough treatment of those methods with which 
the author has had direct numerical experience on the com- 
puter. Treats the methods theoretically and also from the stand- 
point of rounding errors. Presupposes beginning analysis, 
linear algebra, and elementary complex variables. Illustrative 
examples but no exercises. 

V o l u m e  11 / Numl)e r  3 / March ,  1968 C o m m u n i c a t i o n s  of  t i le  ACM 185 



Course A1. Formal Languages and Syntactic 
Analysis (3-0-3) 

APPROACH 

This course combines the theoretical concepts which arise in for 
mal language theory with their practical application to the syntac- 
tic analysis of programming languages. The objective is to build a 
bridge between theory and practical applications, so that  the mathe- 
matical theory of context-free languages becomes meaningfhl to the 
programmer and the theoretically oriented student  develops an un- 
derstanding of practical applications. Assignments in this course 
should include both computer programming assignments and theo- 
rem proving assignments. 

CONTENT 

The following topics should be covered, but  the organization of 
the material and relative emphasis on individual topics is subject 
to individual preference. 

1. Definition of' a formal grammar as notation for specifying a 
subset of the set of all strings over a finite alphabet,  and of a / b r m a l  
language as a set specified by a formal grammar.  Production notation 
for specifying grammars. Reeursively enumerable, context-sensitive, 
context-free, and finite-state grammars.  Examples of languages 
specified by grammars such as anb ", a"b"c ". 

2. Specification of ari thmetic expressions and ari thmetic state- 
ments  as context-free grammars.  Use of context-tree grammars as 
recognizers. Use of recognizers as a component in compilation or 
interpretive execution of ari thmetic statements.  

3. Syntactic analysis, recognizers, analyzers and generators. Top- 
down and bottom-up algorithms. The backtracking problem and the 
reduction of backtracking by bounded context techniques. Theory 
of bounded context analysis and LR(k) grammars.  

4. Precedence and operator precedence techniques. The algo- 
r i thms of Floyd, Wirth and Weber, etc. Semantics of precedence 
grammars for ar i thmetic  s tatements  and simple block structure. 

5. Top-down and bottom-up algorithms for context-free lan- 
guages. The algorithms of Cheatham, Domolki, and others. 

6. Languages for syntactic analysis and compilation such as 
COCENT and TMG. A simple syntactic compiler written in one of 
these languages. 

7. Reduetive grammars, Floyd productions, and semantics for 
ari thmetic expressions. The work of Evans, Feldman, and others. 

8. Theory of context-free grammars, normal forms for context-free 
grammars, elimination of productions of length zero and one. Chom- 
sky and Greibach normal forms. Ambiguous and inherently am- 
biguous grammars. The characteristic sequence of a grammar. Strong 
equivalence, weak equivalence and equivalence with preservation 
of ambiguity. Asymptotic time and space requirements for context- 
free language recognition. 

9. Combinatorial theorems for context-free grammars. Proof that  
anbncn cannot be represented by a context-free grammar. Linear and 
semilinear sets. Parikh's theorem. 

10. Grammars and mechanical devices. Turing machines, linear 
bounded automata,  pushdown automata,  finite-state automata,  and 
the corresponding grammars. 

11. Properties of pushdown automata.  Deterministic and non- 
deterministic automata  and languages. Stack automata.  Program- 
ming languages and pushdown automata.  

ANNOTATED BIBLIOGRAPHY 

1. BAR-HILLEL, Y., PERLES, M., AND SHAMIR, E. On formal prop- 
erties of simple phrase structure grammars.  Zeitschrift fiir 
Phonetik, Sprachwissenschaft und Kommunikationsforschung 
14 (1961), 143-172. (Reprinted in Y. Bar-Hillel (Ed.), Languages 
and Information, Selected Essays. Addison-Wesley, Reading, 
Mass., 1964. CR-6562-7178.) 
A well-written paper containing the first s ta tement  of many of 
the principal results of context-free languages. 

186 C o m m u n i c a t i o n s  o f  t h e  ACM 

2. BAUER, F. L., AND SAMELSON, K. Sequential fbrmula transla- 
tion. Comm. ACM 3, 2 (Feb. 1960), 76-83. CR-6015-0219. 
The first systematic paper on the translation of programming 
languages from left to right using precedence techniques. 

3. BROOKER, R. A., AND MORRIS, D. A general translat ion program 
ibr phrase structure grammars.  J. ACM 9, 1 (Jan. 1962), 1-10. 
Summarizes the design and machine-oriented characteristics of 
a syntax-directed compiler and describes both its syntactic and 
semantic features. 

4. CHEATHAM, T. E., JR., AND SA]~rLEY, K. Syntax directed com- 
piling. Proc. AFIPS 1964 Spring Joint  Comput. Conf., Vol. 25, 
Spartan Books, New York, pp. 31-57. CR-6455-6304. 

A description of one of the earliest operational top-down syntax- 
directed compilers. 

5. CHOMSKY, N. Formal proPerties of grammars.  In R. R. Bush, 
E. H. Galanter, and R. D. Luce (Eds.), Handbook of Mathe- 
matical Psychology, Vol. 2, Wiley, New York, 1962, pp. 223- 
418. CR-6676-10,731. 
An excellent review of the work of both Chomsky and others in 
this field. Contains a good bibliography. See also the two com- 
panion chapters in this volume written by Chomsky and G. A. 
Miller. 

6. EVANS, A. An ALGOL 60 compiler. In R. Goodman (Ed.), 
Annual Review in Automatic Programming, Vol. 4, Pergamon 
Press, New York, 1964, pp. 87-124. CR-6564-7905. 
The first compiler design application of a reductive syntax with 
labelled productions. 

7. FELDMAN, J. A. A formal semantics for computer languages 
and its application in a compiler-compiler. Comm. ACM 9, 1 
(Jan. 1966), 3-9. CR-6674-10,080. 
A description of a formal semantic language which can be used 
in conjunction with a language for describing syntax to specif~ 
a syntax-directed compiler. 

8. FLOYD, R . W .  A descriptive language for symbol manipulation. 
J. ACM 8, 4 (Oct. 1961), 579-584. CR-6234-2140. 
The first discussion of reductive grammars,  including a reduc- 
tive grammar from which the first example in Ref. 9 was de- 
rived. The association of semantics with syntactic recognition 
is directly illustrated. 

9. FLOYD, R. W. Syntactic analysis and operator precedence. J.  
ACM i0, 3 (July 1963), 316-333. 
Defines the notions of operator grammars, precedence grammars 
(here called "operator precedence grammars"),  precedence 
functions, and a number  of other concepts. Examples of prece- 
dence grammars and nonprecedence grammars.  

10. FLOYD, R. W. Bounded context syntactic analysis. Comm. 
ACM 7, 2 (Feb. 1964), 62 67. CR-6454-6074. 
Introduces the basic concepts of bounded context grammars 
and gives a set of conditions for testing whether a given gram- 
mar is of bounded context (m, n). 

11. FLOYD, R. W. The syntax of programming languages--a sur- 
vey. IEEE Trans. EC-13, 4 (Aug. 1964), 346-353. 
An expository paper which defines and explains such concepts 
as phrase-structure grammars, context-free languages, and syn- 
tax-directed analysis. Extensive bibliography. 

12. GINSBURC, S. The Mathematical Theory of Context-Free 
Languages. McGraw-Hill, New York, 1966, 232 pp. CR-6783- 
12,074. 
Presents a rigorous discussion of the theory of context-free lan- 
guages and pushdown automata.  

i3. GREIBAC~, S. A. A new normal-form theorem for context-free 
phrase structure grammars. J. ACM 12, 1 (Jan. 1965), 42-52. 
CR-6564-7830. 

Shows tha t  every grammar is equivalent with preservation of 
ambiguities to a grammar in the "Greibach Normal Form." 

14. GRIFFITH$, T. V., AND PETRICK, S . R .  On the relative efficien- 
cies of context-free grammar recognizers. Comm. ACM 8, 5 
(May 1965), 289-300. CR-6564-7999. 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 



A comparative discussion of a number  of syntactic analysis al- 
gorithms. 

15. IEEE Computer Group, Switching and Automata Theory Com- 
mittee. Conf'. Rec. 1967 8th Ann. Symposium on Switching 
and Automata  Theory. Special Publication 16 C 56, Institute of' 
Electrical and Electronic Engineers, New York, 1967. 

Contains a number  of papers relevant to this course including 
those by: Rosenkrantz, pp. 14-20; Aho, pp. 21-31; Hopcroft 
and Ullman, pp. 37-44; Ginsburg and Greibach, pp. 128- 139. 

16. IBONS, E . T .  A syntax directed compiler for ALGOL 60. Comm. 
ACM4, 1 (Jan. 1961), 51 55. 

The first paper on syntactic compilation. It discusses both a 
top-down implementat ion of a syntactic compiler and the way 
in which semantics is associated with the generation steps of 
such a compiler. 

17. IRONS, E .T .  Structural  connections in formal languages. Comm. 
ACM 7, 2 (Feb. 1964), 67-72. CR-6455-6212. 

The concept of structural connectedness defined is essentially 
the same as tha t  of a bounded context grammar. 

18. KNUTH, D. E. On the translation of languages from left to 
right. Inf. Contr. 8, 6 (Dec. 1965), 607-639. CR-6674-10,162. 
The concept of a grammar which permits translation from left 
to right with torward context k (LR(k) grammar) is developed 
and analyzed. 

19. McCLURE, R. M. TMCG--a syntax directed compiler. Proc. 
ACM 20th Nat. Conf., 1965, pp. 262-274. 
A description of a compiler in which the syntax is specified by 
an ordered sequence of labeled productions and in which se- 
mantics can be explicitly associated with productions. 

20. NAUB, P. (Ed.) Revised report on the algorithmic language, 
ALGOL 60. Comm. ACM6, 1 (Jan. 1963), 1-17. CR-6345-4540. 
The first systematic application of context-free languages to the 
description of actual programming languages. 

21. REYNOLDS, J. C. An introduction to the COGENT program- 
ming system. Proc. ACM 20th Nat. Conf., 1965, pp. 422-436. 

Describes the structure and major facilities of a compiler-com- 
piler system which couples the notion of syntax-directed com- 
piling with tha t  of recursive list processing. 

22. WmTrl, N., AND WEBER, H. EULER: a generalization of 
ALGOL, and its formal definition, Parts I & II. Comm. ACM 9, 
1 (Jan. 1966), 13-23, and 2 (Feb. 1966), 89-99. 
] 'he  first discussion of pure precedence grammars and their use 
in ALGOL-like languages. Many of the concepts introduced by 
other authors are discussed in an illuminating way. 

Course A2. Advanced Computer Organization (3-0-3) 

APPROACH 

This title could label either a course in the organization of ad- 
vanced coulputers or an advanced course in computer organization. 
It is meant to be primarily the latter, with some material on novel 
computer organizations included. The approach is tha t  of "compara- 
tive anatomy":  first, each of several organization and system design 
problems should be identified; then, a comparison of the solutions 
to the problem should be made for several different computers; 
next, the rationale of each solution should be discussed; and finally, 
an a t tempt  should be made to identify the best solution. Students 
should prepare papers on designs used in other machines for several 
of the problem areas. These papers should include discussions of 
the circuit technology available at the time the machine was de- 
signed and the intended market for the machine, and they should 
compare the machine design with other designs. 

CONTENT 

The computer system design problem areas which should be 
covered in this course are listed below followed by a list of some of' 

the machines which might be used to illustrate various solutions to 
these problems. Each major problem area should be discussed in 
general and at least three actual machine designs should be used to 
illustrate the widest possible range of solutions. A brief overall sys- 
tem description of each machine should be given before it is used 
to illustrate a particular design area. 

Computer System Design Problem Areas 

1. Arithmetic Processing. Integer and floating point representa- 
tion, round-off and truncation, word and register lengths. Number 
and types of ari thmetic units, malfunction detection and reaction, 
ari thmetic abort detection, and reaction (overflow, etc.). 

2. Nonarithmetic Processing. Addressable quanta and operation 
codes. Compatibility and interaction of nonarithmetic and arith- 
metic operands. Types of additional processing units. 

3. Memory Utilization. Relationship between memory width 
and addressable quanta, memory block autonomy and phasing, 
memory access priorities (operands, instructions, input-output,  etc.). 
Factoring of command-fetch processes (look-ahead). 

4. Storage Management. Relocation, paging, and renaming. 
Storage protection. Hierarchy storage provisions and transfer mech- 
anisms. 

5. Addressing. Absolute addressing, indexing, indirect address- 
ing, relative addressing, and base addressing. 

6. Control. Clocking, interrupt processing, privileged mode 
operations, and autonomy of control functions. 

7. Input-Output. Buffer facilities, channels (autonomy, inter- 
action, interrupts), processing options (editing, formatting), input- 
output  byte size versus memory width versus addressing quanta. 
Rate-matching (especially for input-output devices with inertial 
and channel-sharing. 

8. Special System Designs. Array or cellular computers, vari- 
able structure computers, and other advanced designs. 

Illustrative Computers 

ATLAS one of the first machines to use paging 
Bendix G-15 a bit serial machine with drum store 
Burroughs Bh000 a zero-address machine with stacks and Polish 

processing 
CDC 6600 a very high-speed computer using look-ahead, 

instruction stacking and multiple peripheral 
processors 

GIER (Denmark) a machine which uses a small core storage with 
an auxiliary drum 

IBM 701 a classic Von Neumann binary machine 
IBM 1401 a serial character machine with peculiar ad- 

dressing 
IBM STRETCH a machine which was intended to incorporate 

all state-of-the-art knowledge 
IBM 360/ij a series of machines which combine character 

and word handling capabilities 
KDF-9 a computer using a nesting store 
PB 440 a microprogrammable computer 
SDS Sigma 7 a real-time time-sharing computer 
UNIVAC I a classic decimal machine 

ANNOIArED BIBLIOGRAPHY 

In addition to the references cited below, it is important  tha t  a 
collection of reference manuals for the actual computers be a v a i l -  
able to the student.  These can be obtained from the computer 
manufacturers in most cases or from various reports such as the 
Auerbach Standard EDP Reports. In some cases where the title of 
the citation is self-explanatory, no annotation is given. 

General references 
1. AMDAHL, G. M., BLAAUW, G. A., AND BROOKS, F. P., JR. Archi- 

tecture of' the IBM System/360. IBM J. Res. Develop. 8, 2 (Apr. 
1964), 87-101. CR-6465-8374. 
Although not a technical paper, it does give some insight into 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  I963 C o m m u n i c a t i o n s  o f  the  ACM 187 



the decisions which determined many of the teatures of this 
family of computers. 

2. BLAaUW, G. A., ST AL. The structure of System/360. IBM Syst. 
J. 3, 2 (1964), 119-195. 
Describes the design considerations relating to the implementa- 
tion, performance, and programming of the System/360 tamily 
of computers. 

3. BOUTWELI~, E. O., JR., AND HOSKINSON, E. A. The logical or- 
ganization of the PB 440 microprogrammable computer. Proe. 
AFIPS 1963 Fall Joint Comput. Conf'., Vol. 24, Spartan Books, 
New York, pp. 201-213. 
Describes the use of a fast-read, slow-write memory for micro- 
programs. The bus structure connecting the processing registers 
allows data transfers under control of the microprogram. 

4. BUCHHOLZ, W. The system design of the IBM 701 computer. 
Proc. IRE41, 10 (Oct. 1953), 1262-1274. 
Describes one of the first commercial binary computers. 

5. BUCmfOLZ, W. (Ed.) Planning A Computer System. McGraw- 
Hill, New York, 1962, 336 pp. CR-6346-4786. 
Describes in reasonable detail a design philosophy and its bear- 
ing on specific design decisions fbr an entire computer system-- 
in this case, STRETCH. 

6. DEVONALD, C. H., AND FOTHERINGHAM, J. A. The ATLAS com- 
puter. Datamation 7, 5 (May 1961), 23-27. CR-6231-1405. 

7. Digital Computer Laboratory, University of Illinois. On the 
Design of a Very High Speed Computer. Rep. No. 80, U. of 
Illinois, Urbana, Ill., 1957. 
A description of the first design tbr ILLIAC II. 

8. ECKERT, d. e., ET AL. The UNIVAC system. Rev. of Elec. Dig. 
Cornput., Proc. Joint IRE-AIEE Conf., Philadelphia, Pa., 10-12 
Dec. 1951, pp. 6-14. 
A description of the UNIVAC I computer. 

9. Engineering Summer Conference, University of Michigan. 
Theory of computing machine design (course notes). U. of Mich- 
igan, Ann Arbor, Mich., 1960-1962. (Distribution of these notes 
was limited to participants.) 
Cover many aspects of design--from the applications of autom- 
ata theory to the system design of parallel computers. 

10. FERNBACH, S. Very high-speed computers, 1964--the manufac- 
turers' point of view. Proc. AFIPS 1964 Fall Joint Comput. Conf., 
Vol. 26, Pt. Ii, Spartan Books, New York, 1965, pp. 33-141. 
Contains detailed reports on the CDC 6600, the IBM System/360 
Model 92, and a Philco multiprocessing system. 

11. GRAM, C., ET AL. GIER--a Danish computer of medium size. 
IEEE Trans. EC-I2, 6 (Dec. 1963), 629-650. 
Gives an evaluation of the order structure and the hardware 
organization and describes the operating system and the ALGOL 
60 system. 

12. GRAY, H. J. Digital Computer Engineering. McGraw-Hill, 
New York, 1963, 381 pp. CR-6341-3654: 
Chap. 1 discusses ENIAC and Enwc  as examples of parallel and 
serial organization. Chaps. 2-4 deal with organization problems. 

13. GSCHWIND, H. W. Design of Digital Computers. Springer-Ver- 
lag, New York, 1967, 530 pp. 
A general reference. 

14. HELLERMAN, H. Digital Computer System Principles. McGraw- 
Hill, New York, 1967, 424 pp. 
A possible text. A good reference. 

15. HOLLANDER, G. L. (Ch.) The best approach to large computing 
capacity--a debate. Proc. AFIPS 1967 Spring ,Joint Comput. 
Conf., Vol. 30, Thompson Book Co., Washington, D. C., pp. 
463-485. 
Presents four approaches to achieving large computing capacity 
through: aggregation of conventional system elements (G. P. 
West); associative parallel processing (R. H. Fuller); an array 
computer (D. L. Slotnick); and the single-processor approach 
(G. M. Amdahl). 

188 C o m m u n i c a t i o n s  o f  t h e  ACM 

16. MENDELSON, M. J., AND ENGLAND, A. W. The SDS Sigma 7: a 
real-time time-sharing system. Proc. AFIPS 1966 Fall Joint 
Comput. Conf., Vol. 29, Spartan Books, New York, pp. 51-64. 
CR-6700-0752. 
Discusses seven critical design problems-including interrupt 
processing, memory protection, space sharing, and recursive 
processing--and their solutions. 

17. RICHARDS, R. K. Electronic D@ital ,St'stems. Wiley, New York, 
1966, 637 pp. CR-6676-10,649. 
Contains a good discussion of reliability and design automation. 

18. WALZ, R. I?. Digital computers--general purpose and DDA. 
Instrum. and Automat. 28, 9 (Sept. 1955), 1516-1522. 
Describes the G-15 computer and the use of a digital differen- 
tial analyzer (DDA) in general purpose digital systems. 

19. WARE, W. H. Digital Computer Technology and Design: Vol. 
I, Mathematical Topics, Principles of Operation and Program- 
ruing: Vol. II, Circuits and Machine Design. Wiley, New York, 
1963, 237 pp. and 521 pp. CR-6562-7103 and 7104. 
Useful because of its coverage of early design techniques. Con- 
tains extensive bibliographies (at the end of each chapter), 
which refer to papers presenting the design features of numerous 
machines. 

R<ferences on arithmetic and control 

20. BLAAUW, G . A .  Indexing and control-word techniques. IBM J. 
Res. Develop. 3, 3 (July 1959), 288-301. 
Describes some of the control techniques used in the STRETCH 
computer. 

21. BECKMAN, F. S., BROOKS, F. P., JR., AND LAWLESS, W. J., JR. 
Developments in the logical organization of computer arith- 
metic and control units. Proc. IRE 49, 1 (Jan. 1961), 53-66. CR- 
6232-i680. 
Summarizes the developments in logical design and in arith 
metic and control units through 1960. Contains a good bibliog- 
raphy. 

22. BROOKS, F. P., JR., BLAAUW, G. A., ANn BUCHHOLZ, W. Proc- 
essing data in bits and pieces. IEEE Trans. EC-8, 3 (June 1959), 
118-124. CR-6012-0035. 
Describes a data-handling unit which permits variable length 
binary or decimal arithmetic. 

23. SUMNER, F. H. The central control unit of the ATLAS com- 
puter. Proc. IFIP Congress, Munich, 1962, North-Holland Pub. 
Co., Amsterdam, pp. 292-296. CR-6342-3961. 

Re[erences on storage management 

24. ARDEN, B. W., GALLER, B. A., O'Bami,  T. C., AND WESTERVELT, 
F . H .  Program and addressing structure in a time-sharing en- 
vironment. J. ACM 13, 1 (Jan. 1966), 1-16. CR-6781-11,210. 
Describes the hardware and software devices used to facilitate 
program switching and efficient use of storage in a time-sharing 
computer system. 

25. BELADY, L .A.  A study of replacement algorithms for a virtual 
memory computer. IBM Syst. J. 5, 2 (1966), 78-101. 
Discusses several algorithms for automatic memory allocation 
and compares them using the results of several simulation runs. 

26. COCKE, J., AND KOLSKY, H. G. The virtual memory in the 
STRETCH computer. Proc. AFIPS 1959 Eastern Joint Comput. 
Conf., Vol. 16, Spartan Books, New York, pp. 82-93. 

27. EVANS, D. C., AND LECLERK, J. Y. Address mapping and the 
control of access in an interactive computer. Proc. AFIPS 1967 
Spring Joint Comput. Conf., Vol. 30, Thompson Book Co., 
Washington, D. C., pp. 23 30. 
Describes the hardware implementation of a design based on 
separate program and data entities. 

28. GIBSON, D. H. Considerations in block-oriented systems de- 
sign. Proc. AFIPS 1967 Spring Joint Comput. Conf., Vol. 30, 
Thompson Book Co., Washington, D. C., pp. 75-80. 
Analyzes block size, high-speed storage requirements, and job 
mix as they affect system design. 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 



Reference on stack computers 

29. ALLMARE, •. H., AND LUCKING, J. R. Design of an arithmetic 
unit incorporating a nesting store. Proc. IFIP Congress, Munich, 
1962, North-Holland Pub. Co., Amsterdam, pp. 694-698. CR- 
6455-6460. 
Describes the arithmetic unit for the KDF-9 computer. 

30. HALE¥, A. C. D. The KDF-9 computer system. Proc. AFIPS 
1962 Fall Joint Comput. Conf., Vol. 22, Spartan Books, New 
York, pp. 108-120. CR-6452-5466. 
Describes the stack register concept, the means used to com- 
municate with it, and the use of zero-address instructions of 
variable length. 

31. BARTON, R. S. A new approach to the functional design of a 
digital computer. Proc. AFIPS 1961 Western Joint Comput. 
Conf., Vol. 19, Spartan Books, New York, pp. 393-396. CR- 
6234-2158. 
The earliest published description of a Polish string processor-- 
the Bh000. 

Parallel and variable structure organizations 

32. ESTaIN, G. Organization of computer systems: the fixed plus 
variable structure computer. Proc. AFIPS 1960 Western Joint 
Comput. Conf., Vol. 17, Spartan Books, New York, pp. 33-40. 
CR-6235-2643. 

33. ESTRIN, G., AND VISWANATHAN, C. R. Organization of a fixed 
plus variable structure computer for computation of eigenvalues 
and eigenvectors of real symmetric matrices. J. ACM 9, 1 (Jan. 
1962), 41-60. 

34. ESTRIN, G., AND TURN, R. Automatic assignment of computa- 
tions in a variable structure computer system. IEEE Trans. EC- 
12, 6 (Dec. 1963), 755-773. 

35. GREGORY, J., AND McREYNOLDS, R. The SOLOMON com- 
puter. IEEE Trans. EC-12, 6 (Dec. 1963), 774-781. 
Presents the system organization, functional description, and 
circuit design from a total systems viewpoint. 

36. HOLLAND, J . H .  A universal computer capable of executing an 
arbitrary number of subprograms simultaneously. Proc. AFIPS 
1959 Eastern Joint Comput. Conf., Vol. 16, Spartar; Books, New 
York, pp. 108-113. 

37. HOLLAND, J. H. Iterative circuit computers. Proc. AFIPS 1960 
Western Joint Comput. Conf., Vol. 17, Spartan Books, New 
York, pp. 259-265. 

38. SLOTNICK, D. L., BORCK, W. C., AND MCREYNOLDS, R. C. The 
SOLOMON computer. Proc. AFIPS 1962 Fall Joint Comput. 
Conf., Vol. 22, Spartan Books, New York, pp. 97-107. 

A general description of the philosophy and organization of a 
highly parallel computer design which is a predecessor of 
ILLIAC IV. 

39. SCHWARTZ, J. Large parallel computers. J. ACM 13, 1 (Jan. 
1966), 25-32. 
Considers various classes of machines incorporating parallelism, 
outlines a general class of large-scale multiprocessors, and dis- 
cusses the problems of hardware and software implementation. 

Course A3. Analog and Hybrid Computing (2-2-3) 

APPROACH 

This course is concerned with analog, hybrid, and related digital 
techniques for solving systems of ordinary and partial differential 
equations, both linear and nonlinear. A portion of the course should 
be devoted to digital languages for the simulation of continuous or 
hybrid systems (MIDAS, PACTOLUS, DSL/90, etc.). The course 
will have both lecture and laboratory sessions. The laboratory will 
allow the students to solve some problems on analog and/or hybrid 
computers and other problems through digital simulation of analog 
or hybrid computers. (Digital simulators of analog computers are 

Volume 11 / Number  3 / March, 1968 

now available for digital machines of almost any size [13-22]. Some 
simulators are written in problem oriented languages such as FOR- 
TRAM and may be adapted to almost any computer.) 

CONTENT 

1. Basic Analog Components. Addition, multiplication by a con- 
stant, integration, function generation, multiplication, division, 
square roots, noiSe generation, and other operations. Laboratory as- 
signments are used to familiarize the student with the operation of 
the components. (15%) 

2. Solution of Differential Equations. The block-oriented ap- 
proach to the solution of linear, nonlinear, and partial differential 
equations. Magnitude and time scaling. Estimation of maximum 
values. Equations with forcing functions and variable coefficients. 
Simultaneous equations. Statistical problems. (20%) 

3. Analog Computer Hardware. Description of various analog 
computers. Amplifiers, potentiometers, and other linear and non- 
linear components. The patch board and the control panel. Record- 
ing and display equipment. Slow and repetitive operation. Several 
laboratory assignments to give the student "hands-on" experience 
with the available machines. (15%) 

4. Hybrid Computer Systems. Different types of hybrid sys- 
tems. Patchable logic and mode control. Comparators, switches, and 
different types of analog memories. Control of initial conditions or 
parameters. (15%) 

5. Analog and Digital Conversion. Brief treatment of analog-to- 
digital and digital-to-analog conversion. Methods of conversion, 
sampling, interpolation, smoothing. Accuracy and speed considera- 
tions. Multiplexing of analog-to-digital converters. (10%) 

6. Digital Simulation of Analog and Hybrid Systems. Compari- 
son of available languages. (One language should be presented in 
detail. The students should compare some of the previous analog 
solutions to those obtained by simulation.) (20%) 

7. Exams. (5%) 

ANNOTATED BIBLIOGRAPHY 

In the citations which follow, applicable chapters are sometimes 
indicated in parentheses after the annotation. 

General textbooks or references for the major part of the course 

1. ASHLEY, J. R., Introduction to Analog Computation. Wiley, 
New York, 1963, 294 pp. 
A compact textbook which stresses the use rather than the de- 
sign aspects of analog computing. The text could be used for 
an undergraduate course, but hybrid computers would have to 
be covered from separate sources. (All chapters) 

2. CARLSON, A., HANNAUER, G., CAREY, T., AND HOLSBERG, P. In 
Handbook of Analog Computation. Electronics Associates, Inc., 
Princeton, N. J., 1965. 
Although this manual is oriented to EAI equipment, it is a 
good basic reference and has an extensive bibliography on se- 
lected applications. 

3. FIFER, S. Analog Computation, Volumes I-IV. McGraw-Hill, 
New York, 1961, 1,331 pp. CR-6126-1122. 
This series of four volumes contains a complete coverage of an- 
alog computers, including hardware and applications. It is a 
good source of problems and references up to 1961. 

4. HUSKEY, H. D., AND KORN, G. A. (Eds.) Computer Handbook. 
McGraw-Hill, New York, 1962, 1,225 pp. CR-6234-2179. 
This comprehensive volume on both analog and digital com- 
puters is somewhat hardware-oriented although applications 
are also inclUded. 

5. JACKSON, A. S. Analog Computation. McGraw-HilL New York, 
1960, 652 pp: CR-6015-0190. 
Although now somewhat out-of-date, this is an excellent text 
for serious students in engineering, especially those with an 
interest in feedback-control theory. The text has many refer- 
ences and an appendix with problem sets. (Chaps. 2-5, 7, 8, 11, 
14) 

C o m m u n i c a t i o n s  o f  t h e  ACM 189 



6. JENNESS, R. R. Analog Computation and Simulation: Labora- 
tory Approach. Allyn and Bacon, Boston, 1955, 298 pp. 
Two parts: the first introduces the analog computer; the sec- 
ond gives the solutions of 21 problems in great detail. 

7. JOHNSON, C. L. Analog Computer Techniques, 2nd ed. Mc- 
Graw-Hill, New York, 1963, 336 pp. CR-6451-5162. 
The text assumes a knowledge of basic electrical and mathe- 
matical principles. Some parts require an understanding of 
servo-mechanism theory and the Laplace transfbrm. Each chap- 
ter has references and problems. (Chaps. 1-3, 7, 10, 12) 

8. KARPLUS, W . J .  Analog Simulation, Solution of Field Problems. 
McGraw-Hill, New York, 1958, 434 pp. CR-6123-0729. 
A reterence on analog techniques /br partial differential equa- 
tions. Includes material on the mathemat ical  background for 
analog study of field problems, a description of analog hard- 
ware, and a mathemat ical  discussion of applications of analog 
techniques to different classes of differential equations. Prob- 
lem-oriented. Extensive bibliographies. 

9. KARPLUS, W. J., AND SOROKA, W. J. Analog Methods, 2nd ed. 
McGraw-Hill, New York, 1959, 496 pp. 
Three parts: on indirect computing elements; on indirect 
computers; and on direct computers. Describes both electro- 
mechanical and electronic computers and covers applications 
comprehensively. 

10. KORN, G. A., AND KORN, T . M .  Electronic Analog and Hybrid 
Computers. McGraw-Hill, New York, 1963, 584 pp. CR-6562- 
7468. 
This text covers the theory, design, and application of analog 
and hybrid computers and has one of the most complete bibli- 
ographies available. Its compactness makes it more suitable 
for an undergraduate text. 

11. LEVINE, L. Methods for Solving Engineering Problems Using 
Analog Computers. McGraw-Hill, New York, 1964, 485 pp. CR- 
6455-6477. 

One of the best available texts, bu t  it needs supplementing on 
equipment. (Ref. 2 might be good for this purpose.) In addition 
to the usual topics, there are chapters on optimization tech- 
niques, estimation and testing of hypotheses, and applications 
in statistics. (Chaps. 1-7). 

12. SMITH, G. W., AND WOOD, R. C. Principles of Analog Compu- 
tation. McGraw-Hill, New York, 1959, 234 pp. CR-6121-0411. 
Introduces analog computers and illustrates various program- 
ming techniques in simulation and computation. 

Descriptions of digital simulators o[ continuous systems 

13. BRENNAN, R. D., AND SANO, H. PACTOLUS--a  digital analog 
simulator program /br the IBM 1620. Proc. AFIPS 1964 Fall 
Joint  Comput. Conf., Vol. 26, Spar tan Books, New York, pp. 
299-312. CR-6563-7630. 
Well-written article describes a digital program for the simu- 
lation of an analog computer. The program is written in FOR- 
ThAN and may be adapted to most machines. It allows man-mR- 
chine interaction. 

14. FARMS, G. J., AND BURKHART, L. E., The DIAN digital simu- 
lation program. Simulation 6, 5 (May 1966), 298-304. 
Describes a digital computer program which has some of the 
features of a digital differential analyzer and which is particu- 
larly suitable for the solution of boundary value problems. 

15. HARNETT, R. T., AND SANSOM, F. J. MIDAS Programming 
Guide. Report No. SEG-TDR-64-1, Analog Comput. Divn., 
Syst. Engng. Group, Res. and Techn. Divn., US Air Force Sys- 
terns Command, Wright-Patterson Air Force Base, Ohio, Jan. 
1964. CR-6672-9510. 

This is the programming manual for the MIDAS simulation 
language. It is well-written and contains four examples com- 
plete with problem descriptions, block diagrams, coding sheets, 
and computed results. 

16. JANOSKI, R. M., SCHAEFER, U. L., AND SKILES, J . J .  COBLOC--  
a program for all-digital simulation of a hybrid computer. 
IEEE Trans. EC-I5, 2 (Feb. 1966), 74-91. 

COBLOC is a compiler which allows all-digital simulation of a 
hybrid computer having both analog and digital computation 
capability. 

i7. MORRIS, S. M., AND SCmESSER, W. E. Undergraduate use of 
digital simulation. Simulation 7, 2 (Aug. 1966), 100-105. CR- 
6781-11,027. 
Describes the LEANS (Lehigh Analog Simulator program and 
shows the solution of a sample problem. 

18. RIDEOUT, V. C., AND TAVERNINI, L. MADBLOC a program fbr 
digital simulation of a hybrid computer. Simulation 4, 1 (,//an. 
1965), 20-24. 
Gives a brief description of the hybrid simulation language 
MADBLOC (one of the Wisconsin "BLOC" programs) which is 
written in the MAD language. Parameter  optimization of a sim- 
ple f?edback system is given as an example. 

19. STEIN, M. L., ROSE, J., AND PARKER, D. B. A compiler with an 
analog oriented input language. Simulation 4, 3 (Mar. 1965), 
158-171. 
Gives a description of a compiler program called "ASTRAL" 
which accepts analog oriented s ta tements  and produces FOR- 
TRAN statements.  It is a reprint of the same paper from the 
Proc. of 1959 Western Joint  Comput. Conf. 

20. SYN, W. M., AND LINEBARGER, R . M .  DSL/90---a digital simula- 
tion program for continuous system modeling. Proc. AFIPS 
1966 Spring Joint  Comput. Conf., Vol. 28, Spar tan Books, New 
York, pp. 165-187. CR-6676-10,708. 

A program which accepts block-oriented s ta tements  and com- 
piles them into FORTRAN IV statements .  Mixing of DSL/90 and 
FORTRAN sta tements  is allowed. The program is available for 
the IBM 7090/94 and 7040/44. 

Comparisons of digital simulators for continuous systems 
21. LINEBARGER, R. N., AND BRENNAN, R. D. A survey of digital 

simulation: digital analog simulator programs. Simulation 3, 6 
(Dec. 1964), 22-36. CR-6671-9009. 
Gives a brief account of the following digital-analog simula- 
tion languages: SELFRIDE, DEPI, ASTRAL, DEPI4, DYSAC, PART- 
NER, DAS, JANIS, MIDAS, and PACTOLUS 

22. LINEBARGER, R. N., AND BRENNAN, R . D .  Digital simulation for 
control system design. Instr. Contr. Syst. 38, 10 (Oct. 1965), 147- 
152. CR-6675-10,425. 

This paper has a very complete bibliography of digital simu- 
lators and a table classifying them. 

Course A4. System Simulation (3-0-3) 

APPROACH 

This course can be taught  from several different points of" view: 
simulation can be treated as a tool of applied mathematics;  it can 
be treated as a tool for optimization in operations research; or it 
can be treated as an example of the application of computer science 
techniques. Which orientation is used and the extent to which com- 
puter  programs are an integral part  of the course should depend 
upon the interests of the instructor and the students.  Most in- 
structors will find it useful to require several small programs and a 
term project. The availability of a simulation language for student 
use is desirable. 

CONTENT 

The numbers  i n  square brackets refer to the items listed in the 
bibliography which follows. 

I. What is simulation? (5ci) [1, 2, 3] 
a. Statistical sampling experiment. [20] 
b. Comparison of simulation and other techniques. [7] 
c. Comparison of discrete, continuous, and hybrid simulation. 

[12, 211 
2. Discrete Change Models. (20~i) 

a. Queueing models. [13] 
b. Simulation models. [1, 2, 3] 

,i 

190 C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 



3. Simulation languages. (20%) [i6, 21, 22] 
4. Simulation Methodology. (20(/) [1, 2, 3] 

a. Generation of random numbers and random variates. [14] 
b. Design of experiments and optimization. [6, 8, 9, 17] 
c. Analysis of' data generated by simulation experiments. [10, 

11, 151 
d. Validation of models and results. [8, 19] 

5. Selected Applications of Simulation. (10(i) [4, 5] 
a. Business games. 
b. Operations research. [18] 
c. Artificial intelligence. 

6. Research Problems in Simulation Methodology. (5~i) 
7. Term Project. (20~i) 

14. 

15. 

BIBLIOGRAPHY 

Textbooks covering a number of the topics of this course 

1. C~ORAFAS, D. N..  Systems and Simulation. Academic Press, 
New York, 1965, 503 pp. 

2. NAYLOR, T. H., BALINTFY, J. L., BURDICK, D. S., AND CHU, K. 
Computer Simulation Techniques. Wiley, New York, 1966, 
352 pp. CR-6781-11,103. 

3. TOCHER, K. D. The Art of Simulation. D. Van Nostrand, 
Princeton, N. J., 1963, 184 pp. CR-6454-6091. 

Bibliographies devoted to simulation 
4. IBM Corporation. Bibliography on Simulation. Report 320- 

0924-0, 1966. 
5. SHUBIK, M. Bibliography on simulation, gamingl artificial in- 

telligence, and allied topics. J. Amer. Statist. Assoc. 55, 292 
(Dec. 1960), 736-751. CR-6122-0581. 

Other works on simulation (which also contain extensive bibliog- 
raphies) 
6. BURDICK, D. S., AND NAYLOR, W. Design of computer simula- 

tion experiments for industrial systems. Comm. ACM 9, 5 (May 
1966), 329-338. CR-6783-11,714. 

7. CONNORS, M. M., AND TEICHROEW, D. Optimal Control of Dy- 
namic Operations Research Models. International Textbook 
Co., Scranton, Pa., 1967, 118 pp. 

8. CONWAY, R . W .  Some tactical problems in digital simulation. 
Management 10, 1 (Oct. 1963), 47-6l. 

9. EHRENFELD, S., AND BEN-TUVIA, S. The efficiency of statistical 
simulation procedures. Technometries 4, 2 (May 1962), 257- 
276. CR-6341-3742. 

10. FISHMAN, G . S .  Problems in the statistical analysis of simula- 
tion experiments: The comparison of means and the length of 
sample records. Comm. ACM 10, 2 (Feb. 1967), 94-99. CR-6783- 
12,103. 

11. FISHMAN, G. S., AND KIVIAT, P . J .  The analysis of simulation- 
generated time series. Mgmt. Sci. 13, 7 (Mar. 1967), 525-557. 

12. FORRESTER, J. W. Industrial Dynamics. M.I.T. Press, Cam- 
bridge, Mass., and Wiley, New York, 1961, 464 pp. 

13. GALLIUER, H. Simulation of random processes. In Notes on 
Operations Research, Operations Research Center, M.I.T., 
Cambridge, Mass., 1959, pp. 231-250. 
HULL, T. E., AND DOBELL, A. R. Random number genegators. 
SIAM Rev. 4, 3 (July 1962), 230-254. CR-6341-3749. 
JACORY, J. E., AND HARRISON, S. Multivariable experimenta- 
tion and simulation models. Naval Res. Log. Quart. 9, (1962), 
121-136. 

16. KRASNOW, H. S., AND MERIKALLIO, R. The past, present and 
future of general simulation languages. Mgmt. Sci. 11, 2 (Nov. 
1964), 236-267. CR-6566-8521. 

17. MCARTHUR, D. S. Strategy in research--alternative methods 
for design of experiments. IRE Trans. Eng. Man. EM-8, 1 (Jan. 
1961), 34-40. 
MORGENTHALER, G. W. The theory and application of simula- 
tion in operations research. In Russel L. Ackoff (Ed.), Progress 
in Operations Research, Wiley, New York, 1961, pp. 363-419. 
SCHENK, H., JR. Computing "AD ABSURDUM." The Na- 
tion 196, 12 (June 15, 1963), 505-507. 

18. 

19. 

, o l . , . o  1, / N.mhor  : , /   arc,,, 

20. TEICHROEW, D. A history of distribution sampling prior to the 
era of the computer and its relevance to simulation. J. Amer. 
Statist. Assoc. 60, 309 (Mar. 1965), 27-49. CR-6673-9823. 

21. TEmHROEW, D. Computer simulation--discussion of the tech- 
nique and comparison of languages. Comm. ACM 9, 10 (Oct. 
1966), 723-741. CR-6782-11,466. 

22. TOCHER, K. D. Review of simulation languages. Oper. Res. 
Quart. 15, 2 (June 1965), 189-218. 

Course AS. Information Organization and 
Retrieval (3-0-3) 

APPROACH 

This course is designed to introduce the student to information 
organization and retrieval of natural language data. Emphasis 
should be given to the development of computer techniques rather 
than philosophical discussions of the nature of information. The 
applicability of the techniques developed for both data and docu- 
ment systems should be stressed. The student should become famil- 
iar not only with the techniques of statistical, syntactic and logical 
analysis of natural language for retrieval, but also with the ex- 
tent of success or failure of these techniques. The manner in which 
the techniques may be combined into a system for use in an opera- 
tional environment should be explored. In the event that a com- 
puter is available together with natural language text in a com- 
puter-readable form, programming exercises applying some of the 
techniques should be assigned. If this is not possible, the student 
should present a critique and in-depth analysis of an article selected 
by the instructor. 

CONTENT 

1. Information Structures. Graph theory, document and term- 
document graphs, semantic road maps, trees and lists, thesaurus 
and hierarchy construction, and multilists. 

2. Dictionary Systems. Thesaurus look-up, hierarchy expansion, 
and phrase dictionaries. 

3. Statistical Systems. Frequency counts, term and document  
associations, clustering procedures, and automatic classification. 

4. Syntactic Systems. Language structure, automatic syntactic 
analysis, graph matching, and automatic tree matching. 

5. Vector Matching and Search Strategies. Keyword matching, 
direct and inverted files, combined file systems, correlation func- 
tions, vector merging and matching, matching of cluster vectors, 
and user feedback systems. 

6. Input Specifications and System Organization. Input op- 
tions. Supervisory systems, their general organization, and operat- 
ing procedures. 

7. Output Systems. Citation indexing and bibliographic cou- 
pling. Secondary outputs including concordances, abstracts, and in- 
dexes. Selective dissemination. Catalog systems. 

8. Evaluation. Evaluation environment, recall and precision, 
presentation of results, and output comparison. 

9. Automatic Question Answering. Structure and extension of 
data bases, deductive systems, and construction of answer state- 
ments. 

ANNOTATED BIBLIOGRAPHY 

There is no one book currently available that could be used as 
a text for this course, so most of the material must be obtained 
from the literature. References 2 and 6 provide excellent state-of- 
the-art surveys and guides, to the literature. 

1. BECKER, J., AND HAYES, R. g .  Introduction to Information 
Storage and Retrieval: Tools, Elements, Theories. Wiley, New 
York, 1963, 448 pp. 
A standard textbook, perhaps the best of those presently avail- 
able. 

C o m m u n i c a t i o n s  of  t h e  ACM 191 



2. CUADRA, C. (Ed.) Annual Review of Information Science and 
Technology. Interscience, New York, Vol. 1, 1966 and Vol. 2, 
1967. 
A survey and review publication. 

3. HAYS, D. G. (Ed.) Readings in Automatic Language Processing. 
American Elsevier, New York, 1966. 
Includes examples of text processing applications. 

4. SALTON, G. Progress in automatic information retrieval. IEEE 
Spectrum 2, 8 (Aug. 1965), 90-103. CR-6675-10,409. 
A survey of current capabilities in text processing. 

5. SALTON, G. Automatic Information Organization and Retrieval. 
McGraw-Hill, New York, to be published in 1968. 
A text concentrating on automatic computer-based information 
retrieval systems. 

6. STEVENS, M. E~ Automatic Indexing: A State-of-the-Art Re- 
port. Monograph 91, National Bureau of Standards, US Dept. 
of Commerce, Washington, D.C., March 30, 1965. 
A survey article that covers the historical development of auto- 
matic indexing systems through 1964. 

7. STEVENS, M. E., GIULIANO, V. E., AND HEILPRIN, L. B. (Eds.) 
Statistical Association Methods for Mechanized Documentation 
--Symposium Proceedings. Miscellaneous Publication 269, 
US Dept. of Commerce, Washington, D. C., 1964. 
A collection of papers concerned with statistical association 
techniques. 

Course A6. Computer Graphics (2-2-3) 

APPROACH 

Since this field is basically only a few years old, it is not sur- 
prising that no underlying theories are uniformly accepted by the 
researchers and implementers. Rather, the pertinent information 
exists as a number of loosely related project descriptions in con- 
ference proceedings and professional journals. This situation is 
similar to that in the information retrieval field, where those con- 
ducting courses at a number of major universities report on current 
accomplishments and research in an effort to coordinate and struc- 
ture the mass of available information and to teach those tech- 
niques which have been found useful. Thus, for the present, this 
course probably should be taught as a seminar where the literature 
is read and perhaps reported by selected students. After some texts 
become available and after more experience has been gained, a 
more formal course atmosphere could be established. 

Although the literature is plentiful, this course clearly assumes 
substantial value to the student only when it includes an intensive 
laboratory (hopefully using a display console) where the various 
algorithms can be tested, compared, and extended. The laboratory 
periods are meant to be used for explaining the details of algorithms 
or hardware and software that are not appropriate to a more formal 
lecture. A variety of programming projects in pattern recognition or 
display programming, for example, are within the scope of a one- 
semester course. The time spent on these projects would be in 
addition to the laboratory time. 

CONTENT 

The thread running through the topics listed below is the unit of 
information--the picture. The course should deal with common ways 
in which the picture is handled in a variety of hitherto largely un- 
related disciplines. First hardware and then software topics should 
be considered, since the software today is still a function of present 
hardware. 

The order and depth of coverage of the material suggested below 
is quite flexible--another sensible order of the material might be 
topics 1, 2, 6, 7, 8, and 3, 4, 5 optional, which would then constitute 
a course in displays. (In any case some material in Sections 6 and 7 

would have to be covered briefly to prepare students for their proj- 
ects.) Also an entire semester could be devoted to pattern recogni- 
tion. 

1. Motivation for graphical data processing and its history, par- 
ticularly that of displays. (5%) 

2. Brief introduction to psycho-physical photometry and display- 
parameters such as resolution and brightness. Block diagram of dis- 
play systems and delineation of the functions of their components: 
the computer subsystem; buffer or shared memory; command de- 
coder; display generator; and producer(s) of points, lines, vectors, 
conic sections, and characters. Extended capabilities such as sub- 
routining, windowing, hardware matrix operations, and buffer ma- 
nipulation. Comparison of various types of CRTs with other display 
producing techniques such as photochromics and electrolumines- 
cence. Brief discussion of passive graphics (output only) devices 
such as x-y plotters, and microfilm recorders. Interrupts, manual 
inputs and human interaction with active displays via light pens, 
voltage pens, function keys, tablets, wands, joy sticks, etc. Dem- 
onstration of equipment. (10%) 

3. Contrast of information retrieval with document retrieval and 
definition of indexing and locating. Image recording parameters such 
as resolution, and their comparison with display parameters. Dem- 
onstration or discussion of microfilm and microfilm handling de- 
vices (manual and automated). Brief discussion of photochromics, 
thermoplastics and other nonconventional media. Brief discussion 
of electro-optical techniques for recording, modulating, and deflect- 
ing. (5%) 

4. Scanning and digitizing of paper or film, and subsequent trans- 
mission of digitized information, including band-width/cost trade- 
offs. Brief review of digital storage techniques and parameters, and 
discussion of tradeoffs in bulk digital versus image storage for pic- 
torial and digital data. Introduction of the notion of a combination 
of a digital and an image system. (5%) 

5. Digitizing as an input process for pattern description and recog- 
nition and preprocessing of this input (cosmetology and normaliza- 
tion). Contrast of symbol manipulative, linguistic, and mathemati- 
cal techniques, such as gestalt, caricatures, features, moments, 
random nets, decision functions, syntax-directed techniques and 
real-time tracking techniques using scopes and tablets. Electro- 
optical techniques such as optical Fourier transforms may also be 
covered briefly. (20%) 

6. Picture models and data structures. Geometry, topology, syn- 
tax, and semantics of pictures, stressing picture/subpicture hier- 
archy. The differences between block diagram, wire frame, and sur- 
face representations. Use of tables, trees, lists, plexes, rings, as- 
sociative memory, and hashing schemes for data structures, and 
the data structure (or list processing) languages which create and 
manipulate them. Mathematics of constraint satisfaction, window- 
ing, three-dimensional transformations and projections, and hidden- 
line problems. (25%) 

7. Display software (probably specific to a given installation). 
Creation and maintenance of the display file, translations between 
the data structure and the display file, interrupt handling, pen 
pointing and tracking, and correlation between light pen detects and 
the data structure. Use of macros or compiler level software for 
standard functions. Software for multiconsole time-shared graphics 
with real-time interaction. (20%) 

8. Selected applications: (10%) 
a. Menu programming and debugging 
b. Flowchart and block diagram processing 
c. Computer assisted instruction 
d. Computer aided design 
e. Chemical modeling 
f. Business 
g. Animated movies 

ANNOTATED BIBLIOGRAPHY 

This bibliography is not complete in its coverage and consists 

192 Communicat ions  of  the  ACM Volume 11 / Number  3 / March, 1968 



primarily of survey articles, as no textbooks exist. A number  of the 
more detailed technical articles in the literature were omitted be- 
cause they were concerned with specific situations or machines. 
Most of the survey articles listed have good bibliographies. A se- 
lection of topics from the outline above can thus be followed by a 
selection of appropriate research papers from the literature. 

1. FETTER, W. A. Computer Graphics in Communications. Mc- 
Graw-Hill, New York, 1965, 110 pp. 
This volume is strong on engineering applications and illustra- 
tions. 

2. GRAY, J. C. Compound data structures for computer-aided de- 
sign: a survey. Proc. ACM 22nd Nat. Conf., 1967, Thompson 
Book Co., Washington, D. C., pp. 355-366. 
A brief survey and comparison of various types of data struc- 
tures currently in use. 

3. GRUENBERGER, F. (Ed.) Computer Graphics: Utility~Produc- 
tion/Art. Thompson Book Co., Washington, D. C., 1967, 225 pp. 
Collection of survey papers, useful for orientation. 

4. NARASIMHAN, R. Syntax-directed interpretat ion of classes of 
pictures. Comm. ACM9, 3 (Mar. 1966), 166-173. 
An introduction to syntactic descriptive models for pictures, 
implemented using simulated parallel processing. This linguis- 
tic approach is also taken by Kirsch, Grenander, Miller, and 
others. 

5. PARKER, D . B .  Solving design problems in graphical dialogue. 
In W. J. Karplus (Ed.), On-Line Computing, McGraw-Hill, 
1967, pp. 176-219. 
A software-oriented survey of display console features. 

6. Ross, D. G., AND RODRIaUEZ, J . E .  Theoretical foundations for 
the computer-aided design system. Proc. AFIPS 1963 Spring 
Joint  Comput. Conf., Vol. 23, Spar tan Books, New York, pp. 
305-322. 
Introduction of the "plex" as a compound list structure for 
both  graphical and  nongraphical entities. Outline of the AED 
philosophy and algorithmic theory of language. 

7. SUTHERLAND, I . E .  Sketchpad: a man-machine  graphical com- 
municat ion system. Lincoln Lab. Tech. Rep. No. 296, M.I.T., 
Lexington, Mass., 1963, 91 pp. 
Presents the pace-setting Sketchpad system: its capabilities, 
data  structure, and some implementat ion details. 

8. SUTHERLAND, W. R. The on-line graphical specification of 
computer procedures. Ph.D. Dissertation, M.I.T., Cambridge, 
Mass., Jan. 1966, and Lincoln Lab. Tech. Rep. No. 405, May 
1966. 
Describes a graphical language, executed interpretively, which 
avoids written labels and symbols by using data connections 
between procedure elements to determine both program flow 
and data flow. 

9. VAN DAM, A. Bibliography on computer graphics. ACM SIG- 
GRAPHICS Newsletter i, 1 (Apr. 1967), Association for Com- 
puting Machinery, New York. 
This extensive bibliography is being kept up-to-date in suc- 
cessive issues of the Newsletter. 

10. VAN DAM, A. Computer-driven displays and their uses in man/  
machine interaction. In F. L. Alt (Ed.), Advances in Computers, 
Vol. 7, Academic Press, New York, 1966, pp. 239-290. 
A hardware-oriented description of CRT console functions. 

Course A7. Theory of Computability (3-0-3) 

APPROACH 

This is a theoretical course which should be taught in a formal 
and precise manner, i.e. definitions, theorems, and proofs. The 
theory of recursive functions and computabili ty should, however, 
be carefully motivated and illustrated with appropriate examples. 

CONTENT 

More material is listed than can easily be covered in a three-hour 
one-semester course. The first three topics should definitely be 
covered, but the instructor can select material from the remaining 
topics. 

1. Introduction to Turing machines (TM's) and the invariance of 
general computability under alterations of the model. Wang ma- 
chines, Shepherdson-Sturgis machines, machines with only 2 sym- 
bols, machines with only 2 states, machines with nonerasing tapes, 
machines with multiple heads and multidimensional tapes. (4 lec- 
tures) 

2. Universal Turing machines. (2 lectures) 
3. Ghdel numbering and unsolvability results, the halting prob- 

lem, and Post's correspondence problem. (3 lectures) 
4. Relative uncomputabili ty,  many-one reducibility and Turing 

reducibility, and the Friedberg-Muchnik theorem. (6 lectures) 
5. TM's with restricted memory access, machines with one 

counter, pushdown automata  and their relation to context-free lan- 
guages. Universality of machines with two counters. (3 lectures) 

6. TM's with limited memory, linear bounded automata  and 
their relation to context-sensitive languages, and the Stearns-Hart- 
manis-Lewis hierarchy. (5 lectures) 

7. TM's  with limited computing time and the Hartmanis-Stearns 
t ime hierarchy. (5 lectures) 

8. Models for real-time computation, TM's  with many tapes ver- 
sus 1 or 2 tapes, and TM's  with many heads per tape versus 1 head 
per tape. (4 lectures) 

9. Random-access stored-program machines, iterative arrays, gen- 
eral bounded activity machines, n-counter real-time machines, and 
other computing devices. (8 lectures) 

10. Complexity classification by functional definition, primitive 
recursive functions, the Grzegorczyk hierarchy and its relation to 
ALGOL programming, real-time countability, and an algorithm for 
fast multiplication. (6 lectures) 

ANNOTATED BIBLIOGRAPHY 

1. AANDERAA, S., AND FISCHER, P. C. The solvability of the halt- 
ing problem for 2-state Post machines. J. ACM 14, 4 (Oct. 1967), 
677-682. 
A problem unsolvable for quintuple Turing machines is shown 
to be solvable for the popular quadruple version of Post. 

2. CAIANIELLO, E. R. (Ed.) Automata Theory. Academic Press, 
New York, 1966, 342 pp. CR-6676-10,935. 
A collection of research and tutorial papers on automata,  formal 
languages, graph theory, logic, algorithms, recursive function 
theory, and neural nets. Because of varying interest and diffi- 
culty, the papers might be useful for supplementary reading 
by ambitious students. 

3. Davis, M. Computability and Unsolvability. McGraw-Hill, 
New York, 1958, 210 pp. 
Contains an introduction to the theory of recursive functions, 
most of Kleene's and Post's contributions to the field and some 
more recent work. 

4. Davis, M. (Ed.) The Undecidable--Basic Papers on Ur~de- 
cidable Propositions, Unsolvable Problems and Computable 
Functions. Raven Press, Hewlett, New York, 1965, 440 pp. 
CR-6673-9790. 
An anthology of the fundamental  papers of Church, Ghdel, 
Kleene, Post, Rosser, and Turing on undecidability and unsolva- 
bility. 

5. FISCHER, P. C. Mult i tape and infinite-state au tomata- -a  sur- 
vey. Comm. ACM 8, 12 (Dec. 1965), 799-805. CR-6675-10,561. 
A survey of machines which are more powerful than finite 
automata  and less powerful than Turing machines. Extensive 
bibliography. 

6, FISCHER, P .C .  On formalisms for Turing machines. J. ACM I2, 
4 (Oct. 1965), 570-580. CR-6675-10,558. 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 C o m m u n i c a t i o n s  of  t i l e  ACM 193 



Variants of one-tape Turing machines are compared and trans- 
formations from one formalism to another  are analyzed. 

7. FRmDBER6, R. M. Two recursively enumerable sets of incom- 
parable degrees of unsolvability (Solution of Post's Problem, 
1944). Proc. Nat. Acad. Sci. 43, (1957), 236-238. 

The "priori ty" method for generating recursively enumerable 
sets is introduced and used to solve this famous problem. 

8. GINSBUn(;, S. Mathematical Theory of Context-Free Lan- 
guages. McGraw-Hill, New York, 1966, 243 pp. 
The first textbook on the theory of context-free languages. It 
gives a detailed mathemat ica l  t rea tment  of pushdown automata,  
ambiguity,  and solvability. 

9. HARTMANIS, J., AND STEARNS, R.E. On the computational com- 
plexity of algorithms. Trans. AMS I17, 5 (May 1965), 285-306. 
Turing computable sequences are classified in terms of the rate 
with which a multitape Turing machine can output the terms 
of the sequence, i.e. the "Hartmanis-Stearns time hierarchy." 

10. HERMES, H. Enumerability, Decidability, Computability. 
Academic Press, New York, 1965, 245 pp. CR-6673-9781. 
A systematic introduction to the theory of recursive functions, 
using Turing machines as a base. 

11. KLEENE, S. C. Mathematical Logic. Wiley, New York, 1967, 
398 pp. 
A thorough yet elementary t rea tment  of first-order mathemati -  
cal logic for undergraduates. Contains much of the material of 
the author 's  graduate text, Introduction to Metamathematics, 
(D. Van Nostrand, Princeton, N. J., 1952, 550 pp.). The material 
has been updated and reorganized to be more suitable for the 
beginning student.  

12. McNAUGHTON, R. The theory of automata,  a survey. In F. L. 
Alt (Ed.), Advances in Computers, Vol. 2. Academic Press, New 
York, 1961, pp. 379-421. CR-6342-3920. 
Most of the areas of au tomata  theory are included with the ex- 
ception of switching theory and other engineering topics. A 
list of 119 references. 

13. MINSKY, M. L. Computation: Finite and Infinite Machines. 
Prentice-Hall,  Englewood Cliffs, N. J., 1967, 317 pp. 

The concept of an "effective procedure" is developed. Also 
treats algorithms, Post productions, regular expressions, com- 
putability, infinite and finite-state models of digital computers, 
and computer languages. 

14. MYHILL, J. Linear bounded automata.  WADD Tech. Note 60- 
165, Wright-Patterson Air Force Base, Ohio, 1960. 

The paper which first defined a new class of automata  whose 
power lies between those of finite automata  and Turing ma- 
chines. 

15. POST, E. L. Recursive unsolvability of a problem of Thue. J.  
Symbol. Logic 11, (1947), 1-11. 

Contains results on one variant  of the "word problem" for semi- 
groups using Turing machine methods. 

16. ROGERS, H., JR. Theotp/ of Recursive Functions and Effective 
Computability. McGraw-Hill, New York, 1967, 482 pp. 

A current and comprehensive account of recursive function 
theory. Proceeds in an intuitive semitbrmal manner,  beginning 
with the recursively enumerable sets and ending with the analy- 
tical hierarchy. 

17. SHANNON, C. E., ANn McCARTHY, J. (Eds.) Automata Studies. 
Princeton University Press, Princeton, N. J., 1956, 285 pp. CR- 
6565-8330. 

A collection of many of the early papers on finite automata,  
Turing machines, and synthesis of automata  which st imulated 
the development of automata  theory. Philosophical papers, in 
addition to mathemat ical  papers, are included since the aim of 
the collection is to help explain the workings of the human 
mind. 

18. SHEPHERDSON, J. C., AND STURGIS, H. E. Computability of 
recursive functions. J. ACM 10, 2 (Apr. 1963), 217-255. CR- 
6451-5105. 

A class of machines which is adequate to compute all partial 

recursive functions is obtained by relaxing the definition of a 
Turing machine. Such machines can be easily designed to carry 
out some specific intuitively effective procedure. 

19. STEARNS, R. E., HARTMANIS, J., AND LEWIS, P . M .  Hierarchies 
of memory limited computations. 1965 IEEE Conference Record 
on Switching Circuit Theory and Logic Design, Special Publi- 
cation 16 C 13, Insti tute of Electrical and Electronic Engineers, 
New York, Oct. 1965, pp. 179-190. 
Turing computable functions are classified according to the 
relationship of the amount  of storage required for a computation 
to the length of the input to the computation,  i.e. the "Stearns- 
Hartmanis-Lewis hierarchy." 

20. TRAKHTENBROT, B. A. Algorithms and Automatic Computing 
Machines, transl, by J, Kristian, J. D. McCawley, a n d  S. A. 
Schmitt.  D. C. Heath, Boston, 1963, 101 pp. 

A translation and adaptat ion firom the second Russian edition 
(1960) of the author 's  elementary booklet on solvability and 
Turing machines. 

21. TUNING, A. M. On computable numbers, ,  with an application 
to the Entscheidungsproblem. Proc. London Math. Soc., Ser. 2, 
42, (1936-1937), pp. 230-265. 
The famous memoir on decision problems which initiated the 
theory of automata.  

22. VON NEUMANN, J. Theory' of Self-Reproducing Automata. 
(Edited and completed by A. W. Burks.) University of Illinois 
Press, Urbana, Illinois, 1966, 388 pp. CR-6700-0670. 
Consists of all previously unpublished sections of Von Neu- 
mann 's  general theory of automata.  Par t  I includes the kine- 
matic model of self-reproduction. Par t  II, which is much longer, 
treats the logical design of a self-reproducing cellular autom- 
aton. 

23. WANG, H. A variant  to Turing's  theory of computing machines. 
J. ACM 4, 1 (Jan. 1957), 61-92. 
An abstract  machine is defined which is capable of carrying out 
any computation and which uses only four basic types of instruc- 
tions in its programs. 

Course A8. Large-scale Information Processing 
Systems (3-0-3) 

APPROACH 

This course is intended to give the s tudent  some appreciation of' 
how computers fit into information systems and how information 
systems fit into a "large organization framework." As this field is 
evolving rapidly, the most interesting and relevant  material  ap- 
pears in articles; moreover, the field is so large t ha t  not all the rele- 
vant  material can be covered. The course may be conducted as a 
lecture course, but  assignment of individual readings in a seminar- 
type situation might be more suitable. 

Many information processing systems are so large t ha t  they re- 
quire a number  of computer programs to be run on a continuing 
basis using large quanti t ies of stored data.  The process of establish- 
ing such a large system involves a number  of steps: (1) the determi- 
nation of the processing requirements; (2) the s ta tement  of those 
requirements in a complete and  unambiguous form suitable for the 
next steps; (3) the design of the system, i.e. the specification of 
computer programs, hardware devices, and procedures which to- 
gether can "bes t "  accomplish the required processing; (4) the con- 
struction of the programs and procedures, and the acquisition of the 
hardware devices; and (5) the testing and operation of the assembled 
components in an integrated system. This course is designed to help 
prepare the s tudent  to part icipate in the development of such sys- 
tems. 

CONTENT 

The numbers  in square brackets after each topic listed below refer 
to the items listed in the bibliography which follows. 

1. Examples of large-scale information systems. (10~i) [12, 28, 30] 

194 C o m m u n i c a t i o n s , o f  t h e  ACM V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 



a. Computer centers. [20, 27, 34] 
b. Infbrmation retrieval. [2] 
c. Real-time and time-sharing. [15, 16, 33] 
d. Business data processing. [14, 18, 19, 31, 32] 

2. Data structures and file management systems. (20~i) [1, 4, 5, 9, 
t0, 13, 17, 29, 38] 

3. Systems design methodology. (40ci) [22, 32] 
a. "Nonprocedural" languages. [8, 26, 38, 40] 
b. Systems design. [3,11, 21, 23, 24, 25, 36, 37] 
c. Evaluation. [7] 

4. Implementation problems. (10~) [6, 35] 
5. Term project. (20(~) 

BIBLIOGRAPHY 

1. BAUM, C., AND GORSUCH, L. (Eds.) Proceedings of the second 
symposium on computer-centered data base systems. TM-2624/ 
100/00, System Development Corporation, Santa Monica, Calif., 
1 Dec. 1965. 

2. BERUL, L. Information storage and retrieval, a state-of-the-art 
report. Report AD-630-089, Auerbach Corporation, Philadel- 
phia, Pa., 14 Sept. 1964. 

3. Bai(;as, R. A mathematical model for the design of informa- 
tion management systems. M.S. Thesis, U. of Pittsburgh, Pitts- 
burgh, Pa., 1966. 
BROOKS, F. P., JR., AND IVERSON, K. E. Automatic Data Proc- 
essing. Wiley, New York, 1963, 494 pp. 
BRYANT, J. H., AND SEMPLE, P., JR. GIS and file management. 
Proc. ACM 21st Nat. Conf., 1966, Thompson Book Co., Wash- 
ington, D. C., pp. 97-107. 
BUCHHOLZ, W. (Ed.) Planning a Computer System. McGraw- 
Hill, New York, 1962, 322 pp. CR-6346-4786. 
CALINGAERT, P. System evaluation: survey and appraisal. 
Comm. ACM I0, 1 (Jan. 1967), 12-18. CR-6782-11,661. 
Codasyl Development Committee, Language Structure Group. 
An information algebra, phase I report. Comm. ACM 5, 4 (Apr. 
1962), 190 201. CR-6235-2621. 
CONNORS, T . L .  ADAM--generalized data management system. 
Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan 
Books, New York, pp. 193-203. CR-6ff76-10,822. 
Control Data Corporation. 3600/3800 INFOL Reference Manual. 
Publ. No. 60170300, CDC, Palo Alto, Calif., July, 1966. 
DAY, R. H. On optimal extracting from a multiple file data 
storage system: an application of integer programming. J. ORSA 
13, 3 (May-June, 1965), 482-494. 
DESMONDE, W. H. Computers and Their Uses. Prentice-Hall, 
Englewood Cliffs, N. J., 1964, 296 pp. CR-6561-6829. 
DOBBS, G. H. State-of-the-art survey of data base systems. 
Proc. Second Symposium on Computer-Centered Data Base 
Systems, TM-2624/100/00, System Development Corporation, 
Santa Monica, Calif., 1 Dec. 1965, pp. 2-3 to 2 10. 
ELLIOTT , C. O., AND WASLEY, R. S. Business Information Proc- 
essing Systems. Richard D. Irwin, Homewood, Ill., 1965, 554 pp. 
FIFE, D. W. An optimization model for time-sharing. Prec. 
AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan Books, 
New York, pp. 97-104. CR-6676-10,869. 
FRANKS, E . W .  A data management system for time-shared file 
processing using a cross-index file and self-defining entries. 
Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan 
Books, New York, pp. 79-86. CR-6676-10,754. 
General Electric Company. Integrated Data Store--A New Con- 
cept in Data Management. Application Manual AS-CPB-483A, 
Revision of 7-67, GE Computer Division, Phoenix, Ariz., 1967. 
GOTLIEB, C. C. General purpose programming for business 
applications. In F. L. Alt (Ed.), Advances in Computers, Vol. 1, 
Academic Press, New York, 1960, pp. 1-42. CR-6016-0206. 
GREGORY, R. H., AND VAN HORN, R. L. Automatic Data Proc- 
essing Systems, 2nd ed. Wadsworth Pub. Co., San Francisco, 
1963, 816 pp. CR-6016-0301, of 1st ed. 
HUTCHINSON, G. K. A computer center simulation project. 
Comm. ACM 8, 9 (Sept. 1965), 559-568. CR-6673-9617. 
KATZ, J. H. Simulation of a multiprocessor computer system. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

I i .  

12. 

13. 

!4. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Proc. AFIPS 1966 Spring Joint Comput. Conf., Vol. 28, Spartan 
Books, New York, pp. 127-139. CR-6676-10,870. 

22. LADEN, H. N., AND GILDERSLEEVE, T. R. System Design for 
Computer Application. Wiley, New York, 1963, 330 pp. 

23. LANGEFORS, B. Some approaches to the theory of information 
systems. BIT 3, 4 (1963), 229-254. CR-6455-6399. 

24. LANGEFORS, B. Information system design computations using 
generalized matrix algebra. BITh, 2 (1965), 96-121. 

25. LOMBARDI, L. Theory of files. Proc. 1960 Eastern Joint Compuf. 
Conf., Vol. 18, Spartan Books, New York, pp. 137-141. CR- 
6236-3165. 

26. LOMBARDI, L. A general business-oriented language based on 
decision expressions. Comm. ACM 7, 2 (Feb. 1964), 104-111. 
CR-6671-9013. 

27. LYNCH, W. C. Description of a high capacity, fast turnaround 
university computer center. Comm. ACM 9, 2 (Feb. 1966), 117- 
123. CR-6673-9546. 

28. MALEY, G. A., AND SKIKO, E. J. Modern Digital Computers. 
Prentice-Hall, Englewood Cliffs, N. J., 1964, 216 pp. CR-6561- 
7081. 

29. McCABE, J. On serial files with relocatable records. J. ORSA 
13, 4 (July-Aug. 1965), 609-618. 

30. McCARTHY, E. J,, McCARTHY, J., AND HUMES, D. Integrated 
Data Processing Systems. Wiley, New York, 1966, 565 pp. 

31. MCCRACKEN, D. D., WEISS, H., AND LEE, T.-H. Programming 
Business Computers. Wiley, New York, 1959, 510 pp. CR-6013- 
0076. 

32. MCGEE, W. C. The formulation of data processing problems 
for computers. In F. L. Alt (Ed.) Advances in Computers, Vol. 4, 
Academic Press, New York, 1964, pp. 1-52. 

33. NIELSON, N.R.  The simulation of time sharing systems. Comm. 
ACM 10, 7 (,July 1967), 397-412. 

34. RosIN, R. F. Determining a computer center environment. 
Comm. ACM 8, 7 (July 1965), 463-488. 

35. SCHULTZ, G. P., AND WHISTER, W. L. (Eds.) Management Or- 
ganization and the Computer. Free Press, Macmillan, New 
York, 1960, 310 pp. 

36: SMITH, J. L. An analysis of time-sharing computer systems 
using Markov models. Proc. AFIPS 1966 Spring Joint Comput. 
Conf., Vol. 28, Spartan Books, New York, pp. 87-95. CR-6676- 
10,835. 

37. TURNBURKE, V. P., JR, Sequential data processing design. IBM 
Syst. J. 2, (Mar. 1963), 37-48. 

38. VER HOEF, E . W .  Design of a multilevel file management sys- 
tem. Proc. ACM 21st Nat. Conf., 1966, Thompson Book Co., 
Washington, D. C., pp. 75-86. CR-6781-11,185. 

39. YOUNC, J. W., JR. Nonprocedural languagess--a tutorial, Paper 
7th Ann. Tech. Symposium, Mar. 23, 1965. South Calif. Chap- 
ters of ACM. Copies may be obtained from the author, Elec- 
tronics Division, MS 50, National Cash Register, 2815 W. E1 
Segundo Blvd., Hawthorne, Calif. 90750. 

40. YOUNG, J. W., JR., AND KENT, H. Abstract formulation of data 
processing problems. J. Ind. Eng. 9, 6 (Nov.-Dec. 1958), 471- 
479. (Also reprinted in Ideas for Management, 1959.) 

Course Ag. Artificial Intelligence and Heuristic 
Programming (3-0-3) 

APPROACH 

As this course is essentially descriptive, it might well be taught 
by surveying various cases of accomplishment in the areas under 
study. Each student should undertake some independent activity as 
part of his course work. This might take the form of a survey article 
on some aspect of the field: a program which simulates some of the 
rudimentary features of learning and forgetting; a program which: 
plays some simple game like three-dimensional tic-tac-toe; or some 
other comparable activity. It would probably be best for the student 
to write any such programs in a list processing language. 

Communicat iOns of the ACM 195 Volume 11 / Number  3 / March, 1968 



CON'fENI" 

The following outline is only a guide. Depending on the instruc- 
tor's preferences and experience, variations will be introduced and 
new material will be added to the subject matter to be presented. 

1. Definition of heuristic versus algorithmic methods using an 
example such as game playing. Description of cognitive processes 
taking place in deriving a new mathematical theorem. Outline of 
Polya's and Hadamard's approaches to mathematical invention. 
Discussion of the heuristic method as an exploratory and as an ex- 
clusive philosophy (cf. theorem proving & ta Newell-Shaw-Simon, 
Robinson and Wang). Objectives, goals and purposes of work in 
areas trader discussion. (3 lectures) 

2. Game playing programs (chess, checkers, go, go-moku, bridge, 
poker, etc.). (3 lectures) 

3. Theorem proving in logic and geometry. (3 lectures) 
4. Formula manipulation on computers. (3 lectures) 
5. Pattern recognition and picture processing. (3 lectures) 
6. General problem solvers and advice takers. (4 lectures) 
7. Question answering programs. (3 lectures) 
8. Verbal and concept learning simulators. (3 lectures) 
9. Decision making programs. (3 lectures) 
10. Music composition by computers. (3 lectures) 
11. Learning in random and structured nets. Neural networks. (3 

lectures) 
12. Adaptive systems. (3 lectures) 
13. State-of-the-art in machine translation of languages and 

natural language processing. (4 lectures) 
14. Questions of philosophical import: the mind-brain problem 

and the nature of' intelligence, the relevance of operational defini- 
tions, and what is missing in present day "thinking machines." (2 
lectures) 

BIBLIOGRAPHY 

The entries given below are grouped according to the items of 
the "Content" above to which they apply. This list serves only as a 
starting point and can be extended easily using the bibliographies 
listed below. 

General reference 
1. FEIGENBAUM, E. A., AND FELDMAN, g. (Eds.) Computers and 

Thought. McGraw-Hill, New York, 1966, 535 pp. CR-6563-7473. 
Contains many of the articles listed below and a "Selected 
Descriptor-Indexed Bibliography" by Marvin Minsky. 

Heuristic versus algorithmic methods [Item I] 
2. ARMER, P. Attitudes toward intelligent machines. In Computers 

and Thought, pp. 389-405. CR-6125-0977 and CR-6236-2900. 
3. FINDLER, N. V. Some further thoughts on the controversy of 

thinking machines. Cybernetica 6, (1963), 47-52. 
4. HADAMARD, J. The psychology of invention in the mathemati- 

cal field. Dover Publications, New York, 1945, 145 pp. CR-6345- 
4614. 

5. MINSKY, M. Steps toward artificial intelligence. In Computers 
and Thought, pp. 406-450. CR-6232-1528. 

6: NAGEL, E. The Structure of Science: Problems in the Logic of 
Scientific Explanation. Harcourt, Brace & World, New York, 
1961, 612 pp. 

7. POLYA, G. Mathematics and Plausible Reasoning: Vol. I, In- 
duction and Analogy in Mathematics; Vol. I1, Patterns of Plausi- 
ble Inference. Princeton University Press, Princeton, N. J., 1954, 
280 and 190 pp. 

Game playing programs [Item 2] 
8. BERLEKAMP, E. R. Program for double-dummy bridge prob- 

lems--a new strategy for mechanical game playing. J. ACM 10, 
3 (July 1963), 357-364. CR-6452-5297. 

9. FINI)LER, N. V. Computer models in the learning process. In 
Proc. lnternat. Symposium on Mathematical and Computational 

.... Methods in the Social and Life Sciences, Rome, 1966. 

196 C o m m u n i c a t i o n s  , ,f  t h e  ACM 

10. NEWELI/, A., SHAW, J. C., AN[) SIMON, I-l. A. Chess playing 
programs and the problem of complexity. In Computers and 
Thought, pp. 39-70. CR-6012-0048. 

11. PERVIN, I. A. On algorithms and programming for playing at 
dominoes, transl, from Russian. Automation Express I (1959), 
26-28. CR-6235-2328. 

12. REMUS, H. Simulation of a learning machine tor playing Go. 
Proc. IFIP Congress, Munich, 1962, North-Holland Pub. Co., 
Amsterdam, pp. 192--194. CR-6341-3420. 

13. SAMUEL, A. L. Some studies in machine learning using the 
game of checkers. In Computers and Thought, pp. 71-105. 

Theorem proving in logic and geometry [Item 3] 
14. DAVIS, M., LOGEMANN, G., AND LOVELAND, D. A machine pro- 

gram fbr theorem-proving. Comm. ACM 5, 7 (July 1962), 394- 
397. 

15. GELERNTER, H., HANSEN, J. R., AND LOVELAND, D.W. Empiri- 
cal exploration of the geometry-theorem proving machine. In 
Computers and Thought, pp. 134-152. CR-6233q928. 

16. NEWELL, A., SHAW, J. C., AND SIMON, H. A. Empirical ex- 
plorations with the logic theory machine: a case study in heu- 
ristics. In Computers and Thought, pp. 109-133. 

17. ROBINSON, J .A .  Theorem proving on the computer, J. ACM I0, 
2 (Apr. 1963), 163-174. CR-6452-5460. 

18. WANC,, H. Proving theorems by pattern recognition. Comm. 
ACM 3, 4 (Apr. 1960), 220-234. CR-6016-0369. 

Formula manipulation on computers [Item 4] 
19. BOND, E., AUSLANDER, M., GRISOFV, S., KENNEY, R., MYSZEW- 

SKI, M., SAMMET, J. E., TOBEY, R. G., AND ZILLES, S. FOR- 
MAC--an experimental FORmula MAnipulation Compiler. 
Proc. ACM 19th Nat. Conf., 1964, Association for Computing 
Machinery, New York, pp. K2.1-1 to K2.1-19. 

20. BROWN, W. S. The ALPAK system for nonnumerical algebra 
on a digital computer, I and II. Bell Syst. Tech. J. 42 (1963), 
2081-2119, and 43 (1964), 785-804. 

21. PERLIS, A. J., AND ITURRIAGA, R. An extension to ALGOL for 
manipulating formulae. Comm. ACM 7, 2 (Feb. 1964), 127-130. 

22. SAMMET, J. E. An annotated descriptor based bibliography on 
the use of computers for nonnumerical mathematics. Corn. Rev. 
7, 4 (Jul.-Aug. 1966), B-1 to B-31. 

23. SLAGLE, J. R. A heuristic program that solves symbolic in- 
tegration problems in freshman calculus. In Computers and 
Thought, pp. 191-203. CR-6236-3068. 

Pattern recognition and picture processing [Item 5] 
24. MCCORMICK, B. H., RAY, S. R., SMITH, K. C., AND YAMADA, S. 

ILLIAC III: A processor of visual information. Proe. IFIP Con- 
gress, New York, 1965, Vol. 2, Spartan Books, New York, pp. 
359-361. 

25. TIPPETT, J. T., BERKOWITZ, D. A., CLAPP, L. C., KOESTER, C. J., 
AND VANDERBURGH, A., JR. (Eds.) Optical and Electro-Optical 
Information Processing, Proc. Symp. Optical and Electro-Opti- 
cal Inf. Proc. Tech., Boston, Nov. 1964. M.I.T. Press, Cambridge, 
Mass., 1965, 780 pp. CR-6673-9829. 

26. UHR, L. (Ed.) Pattern Recognition. Wiley, New York, 1966, 
393 pp. CR-6674-10,028. 

General problem solver and advice taker [Item 6] 
27. McCARTHY, J. Programs with common sense. In D. V. Blake 

and A. M. Uttley (Eds.), Proc. Syrup. on Meehanisation of 
Thought Processes, Two volumes, National Physical Labora- 
tory, Teddington, England. H.M. Stationery Office, London, 
1959, pp. 75-84. 

28. NEWELL, A., SHAW, J. C., AND SIMON, H. A. A variety of in- 
telligent learning in a general problem solver. In M. Yovits and 
S. Cameron (Eds.), Self-Organizing Systems, Pergamon Press, 
New York, 1960, pp. 153-159. CR-6236-2908. 

29. NEWELI,, A., AND SIMON, H .A.  Computer simulation of human 
thinking. Science 134, 3495 (22 Dec. 1960), 2011-2017. CR-6234- 
2062. 

V o l u m e  11 / N u m b e r  3 / March,  1968 



Question answering programs [Item 71 

30. BOBROW, D. G. A question answering system for high school 
algebra word problems. Proc. AFIPS 1964 Fall Joint Comput. 
Conf., Vol. 26, Spartan Books, New York, pp. 591-614. CR-6562- 
7183. 

31. GREEN, B. F., WOLF, A. K., CHOMSKY, C., AND LAUGHERY, K. 
Baseball: an automatic question answerer. In Computers and 
Thought, pp. 207-216. CR-6341-3417. 

32. LINDSAY, R. K. Inferential memory as the basis of' machines 
which understand natural language. In Computers and Thought, 
pp. 217-233. 

33. RAPHAEL, B. A computer program which "understands." Proc. 
AFIPS 1964 Fall Joint Comput. Conf'., Vol. 26, Spartan Books, 
New York, pp. 577-589. CR-6562-7207. 

34. SIMMONS, R. F. Answering English questions by computer--a 
survey. Comm. ACM 8, 1 (Jan. 1965), 53-70. CR-6563-7643. 

Verbal and concept learning [Item 8] 

35. FEIGENBAUM, E . A .  The simulation of verbal learning behavior. 
In Computers and Thought, pp. 297-309. CR-6234-2060. 

36. FEIGENBAUM, n. A., AND SIMON, H.A.  Forgetting in an associa- 
tive memory. Preprints of papers presented at the 16th Nat. 
Meeting of the ACM, Los Angeles, Sept. 5 8, 1961, Association 
for Computing Machinery, New York. CR-6232-1667. 

37. HUNT, E. B. Concept Learning: An Information Processing 
Problem. Wiley, New York, 1962, 286 pp. CR-6561-6872. 

38. MH,LER, G. A., GALANTER, E., aND PRIBRAM, K. Plans and the 
Structure of Behavior. Holt, Rinehart and Winston, New York, 
1960. 

Decision making programs [Item 9] 

39. CLARKSON, G. P. E. A model of the trust investment process. 
In Computers and Thought, pp. 347-371. CR-6563-7473. 

40. FELDMAN, J. Simulation of behavior in the binary choice ex- 
periment. In Computers and Thought, pp. 329-346. CR-6342- 
3760. 

41. FINDLER, N.V.  Human decision making under uncertainty and 
risk: computer-based experiments and a heuristic simulation 
program. Proc. AFIPS 1965 FaLl Joint Comput. Conf., Pt. I. 
Spartan Books, New York, pp. 737-752. CR-6673-9594. 

Music composition [hem 10] 
42. Computers in Music. Session 7, Tues. Nov. 8, at the AFIPS 

1966 Fall Joint Computer Conf., San Francisco. (The papers for 
this session were not published in the conference proceedings.) 

43. GILL, S. A technique for the composition of music in a com- 
puter. Comput. J.  6, 2 (July 1963), 129-133. CR-6451-4983. 

44. HILLER, L. A., JR., AND ISAACSON, L. M. Experimental Music. 
McGraw-Hill, New York, 1959, 197 pp. CR-6012-0047. 

45. MATHEWS, M.V.  The digital computer as a musical instrument. 
Science 142, 3592 (1 Nov. 1963), 553-557. 

46. REITMAN, W . R .  Cognition and Thought: An Information Proc- 
essing Approach. (Chap. 6). Wiley, New York, 1965, 312 pp. 

47. SEAY, A. The composer of music and the computer. Comput. 
Autom. 13, 8 (Aug. 1964), 16-18. CR-6563-7548. 

Learning nets and neural networks [Item 1I] 
48. ARBIB, M. Brains, Machines and Mathematics. McGraw-Hill, 

New York, 1964, 163 pp. CR-6455-6254. 

49. BLOCK, H. D. Adaptive neural networks as brain models. 
Experimental Arithmetic, High Speed Computing and Mathe- 
matics, Proc. of Symposia in Appl. Math. 15, American Mathe- 
matical Society, Providence, R. I., 1963, pp. 59-72. CR-6453- 
5608. 

50. LETTVIN, J. Y., MATURANA, H., McCuLLOCH, W. S., AND PITTS, 
W. What the flrog's eye tells the frog's brain. Proc. IRE 47, 
(1959), 1940 1951. 

51. ROSENBLATT, F. Principles of Neurodynamics. Cornell Aero- 
naut. Lab. Rep. 1196-G-8, Spartan Books, New York, 1962. 

52. YOUNG, J. Z. A Model of the Brain. Clarendon Press, Oxfbrd, 
England, 1964, 384 pp. 

Adaptive systems [Item 12] 

53. FOGEL, L. J., OWENS, A. J., AND WALSH, M. J. Artificial In- 
telligence Through Simulated Evolution. Wiley, New York, 
1966, 170 pp. 

54. NmSSON, N. J. Learning Machines. McGraw-Hill, New York, 
1965, 137 pp. CR-6565-8177. 

55. Tou, J. T., AND WILCOX, R. H. (Eds.) Computer and Informa- 
tion Sciences. Proc. of Symposium at Northwestern University, 
1963, Spartan Books, New York, 1964, 544 pp. 

56. VON FOERSTER, H., AND ZOPF, G. W., JR., (Eds.) Principles of 
Self-Organization. Pergamon Press, New York, 1962. 

57. YOWTS, M. C., JACOBI, G. T., AND GOLDSTEIN, G. D. (Eds.) 
Self-Organizing Systems, 1962. Spartan Books, New York, 1962, 
563 pp. CR-6456-6603. 

Natural language processing [Item 13] 
58. BAR-HILLEL, Y. Language and Information: Selected Essays on 

Their Theory and Application. Addison-Wesley, Reading, 
Mass., 1964, 388 pp. CR-6562-7178. 

59. BOBROW, D. G. Syntactic analysis of English by computer--a 
survey. Proc. AFIPS 1963 Fall Joint Comput. Conf., Vol. 24, 
Spartan Books, New York, pp. 365-387. CR-6671-8838. 

60. CHOMSKY, N. Aspects of the Theory of Syntax. M.I.T. Press, 
Cambridge, Mass., 1965, 251 pp. CR-6676-10,735. 

61. GARVlN, P. L. (Ed.) Natural Language and the Computer. 
McGraw-Hill, New York, 1963, 398 pp. CR-6456-6569. 

62. HAYS, D. (Ed.) Readings in Automatic Language Processing. 
American Elsevier, New York, 1966, 202 pp. 

Questions of philosophical import [Item 14] 
63. MACKAY, D. M. Mind-like behavior in artifacts. Brit. J. Phil. 

Sci. 2, (1951), 105-121. 
64. SAVRE, K. M., ANn CROSSON, F. J. (Eds.) The Modeling of 

Mind: Computers and Intelligence. University of Notre Dame 
Press, Notre Dame, Ind., 1963, 275 pp. CR-6455-6205. 

65. SIMON, H . A .  The architecture of complexity: Proc. Am. Phil. 
Soc. 106, (1962), 467-482. 

66. TUR1NG, A. M. Computing machinery and intelligence. In 
Computers and Thought, pp. 11-35. 

Reprints availabh, #ore A ('M Headquarter.y, 2ll Lbst 43 Street, Ne w ~rh, N. Y. 10017 
Sinfle copies, $I.00 each; orders of :50 or more. 50¢ each: all arders mu.~l be prepaid 

V o l u m e  11 / N u m b e r  3 / M a r c h ,  1968 C o m m u n i c a t i o n s  o f  t i le  ACM 197 


