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INTRODUCTION: ACM first published recommendations for undergraduate programs in computer 

science in 1968 in a report called "Curriculum '68: '  The report was produced as an activity of the ACM 

Education Board, which since then has been providing updates to recommendations for computer science 

programs as well as recommendations for other academic programs in computing. 

In 1984 it was recognized by Education Board Chair Robert Aiken that there was a need for a fresh look 

at undergraduate computer science curricula. The discipline had matured considerably during the previous 

decade, but there had been enough changes in both subject matter and pedagogy to create a need to up- 

date the recommendations that had been published in 1979. One problem was that while many programs 

had sprung up in response to local demanci, the implementors did not have a good feel for the discipline 

and the programs were too narrow, often lacking depth as well as breadth. It was decided that a good 

starting point for reconsideration of degree programs in computer science would be to establish a working 

definition of the discipline. 

At about the same time, informal discussions took place between members of the Education Board and 

members of the IEEE Computer Society regarding the possibility of joint work in the curriculum area. Both 

societies had published curriculum recommendations independently, but it was recognized that there was 

a great deal of overlap in interests and considerable commonality between the recommendations of the two 

groups. Furthermore, joint recommendations from the two societies were likely to have a much greater 

impact than recommendations from only one of the two. 

Consequently, a task force of distinguished computer scientists was formed in 1985 by ACM, in co- 

operation with the Computer Society, to establish a definition of the discipline and to make recommendations 

for an introductory course sequence that would provide a foundation for curricula in the discipline. The task 

force, chaired by Peter Denning published its report in December 1988. It was decided to complete the 

task of developing recommendations for the entire undergraduate curriculum by forming another task force 

jointly with the Computer Society; this was done in February, 1 ?88. 

The Joint ACM/IEEE-CS Curriculum Task Force published its report in March, 1971. A summary of the 

report is provided in the following article, and the entire report can be ordered through the ACM Order 

Department (Order Number 201 ?10). The report represents the efforts of the task force to present current 
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ming an,] design in a different 
light. Overall, it attempts to inte- 
grate theory, abstraction, design, 
and the social context of  computing 
into the curriculum in more com- 
pelling ways. 

In summary, the report is influ- 
enced by its predecessors, yet it is 
quite different in scope and objec- 
tives from any one of them. It re- 
flects the rapid and dramatic evolu- 
tion of the discipline of computing 
and its pedagogy that has taken 
place during the last several years. 
It is holistic, attempting to reach a 
wider constituency than any of its 
predecessors. It is intentionally de- 
signed to encourage curriculum 
innovation and evolution, enabling 
educators to respond in a timely 
fashion to future changes in the 
discipline rather than to simply 
update earlier models. 

Undergraduate Program 
Goals/Graduate PrOfiles 
Undergraduate programs in com- 
puting share common attributes, 
values, and curricula, and so do 
their graduates. The following dis- 
cussion reflects the Task Force's 
view of these shared attributes and 
values that serve as a basis for the 
curriculum recommendations that 
follow. 

Undergraduate programs 
should prepare graduates to un- 
derstand the field of computing, 
both as an academic discipline and 
as a profession within the context of 
a larger society. Thus, graduates 
should be aware of the history of 
computing, including those major 
developments and t rends--  
economic, scientific, legal, political, 
and cultural--that have combined 
to shape the discipline during its 
relatively short life. 

The first goal for undergraduate 
programs, therefore, is to provide a 
coherent and broad-based coverage 
of the discipline of computing. 
Graduates should develop a rea- 
sonable level of  understanding in 
each of the subject areas and pro- 
cesses that define the discipline, as 

well as an appreciation for the in- 
terrelationships that exist among 
them. 

A second goal for undergraduate 
programs in computing is to func- 
tion effectively within the wider in- 
tellectual framework that exists 
within the institutions that house 
the programs. These institutions 
vary widely in their respective mis- 
sions. Some of them emphasize 
breadth of study over depth, while 
others emphasize the opposite. 
Some are rigid in the overall bal- 
ance between requirements and 
electives, while others are more 
flexible. 

Third, different undergraduate 
programs place different levels of  
emphasis upon the objectives of  
preparing students for entry into 
the computing profession, prepar- 
ing students for graduate study in 
the discipline of computing, and 
preparing students for the more 
general challenges of  professional 
and personal life. 

Fourth, undergraduate pro- 
grams should provide an environ- 
ment in which students are exposed 
to the ethical and societal issues that 
are associated with the computing 
field. This includes maintaining 
currency with recent technological 
and theoretical developments, up- 
holding general professional stan- 
dards, and developing an aware- 
ness of one's own strengths and 
limitations, as well as those of the 
discipline itself. 

Fifth, undergraduate programs 
should prepare students to apply 
their knowledge to specific, con- 
strained problems and produce so- 
lutions. This includes the ability to 
define a problem clearly; to deter- 
mine its tractability; to study, spec- 
ify, design, implement, test, mod- 
ify, and document that problem's 
solution; and to work within a team 
environment throughout the entire 
problem-solving process. 

Finally, undergraduate pro- 
grams should provide sufficient 
exposure to the rich body of theory 
that underlies the field of comput- 

ing, so that students appreciate the 
intellectual depth and abstract is- 
sues that will continue to challenge 
researchers in the future. 

Underlying Principles 
for Curriculum Design 
As noted earlier, the report Comput- 
ing as a Discipline presented a com- 
prehensive and contemporary defi- 
nition of the discipline of 
computing. This definition pro- 
vides a conceptual basis for defin- 
ing a new teaching paradigm, as 
well as undergraduate curriculum 
design guidance for the discipline. 
The definition includes a specifica- 
tion of the subject matter by identi- 
fying nine constituent subject areas 
and three processes that character- 
ize different working methodolo- 
gies used in computing research 
and development. That  specifica- 
tion is used in significant ways in 
this article. 

From the subject matter of  the 
nine areas of the discipline, this ar- 
ticle identifies a body of fundamen- 
tal material called the common re- 
quirements, to be included in every 
program. The curriculum of each 
program must also contain substan- 
tial emphasis on each of the three 
processes, which are called theory, 
abstraction, and design. In addition, 
this article identifies a body of sub- 
ject matter representing the social 
and professional context of the dis- 
cipline, also considered to be essen- 
tial for every program. Finally, a set 
of concepts that recur throughout 
the discipline, and that represent 
important notions and principles 
that remain constant as the subject 
matter of the discipline changes, 
are an important component of 
every program. 

The Nine Subject Areas 
Nine subject areas are identified in 
Computing as a Discipline as compris- 
ing the subject matter of the disci- 
pline. Each of these areas has a sig- 
nificant theoretical base, significant 
abstractions, and significant design 
and implementation achievements. 
While these subject area definitions 
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cover the entire discipline, they 
each contain certain fundamental 
subjects that should be required in 
all undergraduate programs in 
computing; this fundamental sub- 
ject matter is identified later as the 
common requirements for all pro- 
grams. On the other hand, certain 
parts of  these subject areas are less 
central and are therefore not in- 
cluded in the common require- 
ments. These topics are left for the 
advanced components of  the un- 
dergraduate or  graduate curricu- 
lum. 

Thus, in some cases, major com- 
ponents of  a subject area that ap- 
pear in its title are not included in 
the common requirements. For 
example, the common require- 
ments do not contain subject matter 
on symbolic computation. How- 
ever, the subject area title "Numeri- 
cal and Symbolic Computation" 
from Computing as a Discipline is re- 
tained, both in the interest of  conti- 
nuity and because additional sub- 
ject matter will appear in the 
advanced components of  comput- 
ing curricula. For instance, sym- 
bolic computation appears among 
the advanced and supplemental 
topics that are described in an up- 
coming section, even though it does 
not appear among the common 
requirements. 

The  nine subject areas are: 
* Algorithms and Data Structures 
• Architecture 
• Artificial Intelligence and Robot- 

ics 
# Database and Information Re- 

trieval 
• Human-Computer  Communica- 

tion 
e Numerical and Symbolic Compu- 

tation 
o Operating Systems 
* Programming Languages 
* Software Methodology and Engi- 

neering 
More detailed discussion of  these 
areas can be found in the report  
Computing as a Discipline, as well as 
the full report  Computing Curricula 
1991 itself. 

The Three Processes: 
Theory, Abstraction, and Design 
Because computing is simultane- 
ously a mathematical, scientific, and 
engineering discipline, different 
practitioners in each of  the nine 
subject areas employ different 
working methodologies, or pro- 
cesses, during the course of  their 
research, development, and appli- 
cations work. 

One such process, called theory, is 
akin to that found in mathematics, 
and is used in the development of  
coherent mathematical theories. An 
undergraduate 's  first encounter 
with theory in the discipline often 
occurs in an introductory mathe- 
matics course. Further theoretical 
material emerges in the study of  
algorithms (complexity theory), 
architecture (logic), and program- 
ming languages (formal grammars 
and automata). The present curric- 
ulum recommendations contain a 
significant amount  of  theory that 
should be mastered by undergrad-  
uates in all programs. 

The  second process, called ab- 
straction, is rooted in the experi- 
mental sciences. Undergraduate 
programs in computing introduce 
students to the process of  abstrac- 
tion in a variety of  ways, both in 
classes and in laboratories. For ex- 
ample, the basic von Neumann 
model of  a computer  is a funda- 
mental abstraction whose proper- 
ties can be analyzed and compared 
with other competing models. Stu- 
dents are introduced to this model 
early in their undergraduate  
coursework. Undergraduate labo- 
ratory experiments that emphasize 
abstraction stress analysis and in- 
quiry into the limits of  computa- 
tion, the properties of  new compu- 
tational models, and the validity of  
unproven theoretical conjectures. 

The third process, called design, 
is rooted in engineering and is used 
in the development of  a system or 
device to solve a given problem. 
Undergraduates learn about design 
both by direct experience and by 
studying the designs of  others. 

Many laboratory projects are de- 
sign-oriented, giving students first- 
hand experience with developing a 
system or a component  of  a system 
to solve a particular problem. 
These laboratory projects empha- 
size the synthesis of  practical solu- 
tions to problems and thus require 
students to evaluate alternatives, 
costs, and performance in the con- 
text of  real-world constraints. Stu- 
dents develop the ability to make 
these evaluations by seeing and dis- 
cussing example designs as well as 
receiving feedback on their own 
designs. 

In all nine subject areas of  com- 
puting, these three processes of  
theory, abstraction, and design 
appear prominently and indispen- 
sably. A thorough grounding in 
each process is thus fundamental  to 
all undergraduate  programs in the 
discipline. 

Social and Professional Context 
Undergraduates also need to un- 
derstand the basic cultural, social, 
legal and ethical issues inherent in 
the discipline of  computing. They 
should understand where the disci- 
pline has been, where it is, and 
where it is heading. They should 
also understand their individual 
roles in this process, as well as ap- 
preciate the philosophical ques- 
tions, technical problems, and aes- 
thetic values that play an important 
part in the development of  the dis- 
cipline. 

Students also need to develop the 
ability to ask serious questions 
about the social impact of  comput- 
ing and to evaluate proposed an- 
swers to those questions. Future 
practitioners must be able to antici- 
pate the impact of  introducing a 
given product  into a given environ- 
ment. Will that product  enhance or 
degrade the quality of  life? What 
will the impact be upon individuals, 
groups, and institutions? 

Finally, students need to be 
aware of  the basic legal rights of  
software and hardware vendors 
and users, and they also need to 
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appreciate the ethical values that 
are the basis for those rights. Fu- 
ture practitioners must understand 
the responsibility they will bear, 
and the possible consequences of 
failure. They must understand 
their own limitations as well as the 
limitations o f  their tools. All practi- 
tioners must make a long-term 
commitment to remaining current 
in their chosen specialties and in 
the discipline of  computing as a 
whole. 

To provide this level of  aware- 
ness, undergraduate  programs 
should devote explicit curricular 
time to the study of  social and pro- 
fessional issues. The subject matter 
recommended for this study ap- 
pears in the knowledge units under  
the heading SP: Social, Ethical, and 
Professional Issues. 

Recurring Concepts 
The discussion thus far has empha- 
sized the division o f  computing into 
nine subject areas, three processes, 
and its social and professional con- 
text. However, certain fundamental  
concepts recur throughout  the dis- 
cipline and play an important role 
in the design of  individual courses 
and whole curricula. Computing as a 
Discipline refers to some of  these 
concepts as affinity groups or basic 
concerns throughout the discipline, x 
The Task Force refers to these fun- 
damental concepts as recurring con- 
cepts in tlhis article. 

Recurring concepts are signifi- 
cant ideas, concerns, principles and 
processes that help to unify an aca- 
demic discipline. An appreciation 
for the pervasiveness o f  these con- 
cepts and an ability to apply them in 
appropriate contexts is one indica- 
tor o f  a graduate's maturity as a 
computer  scientist or engineer. 
Clearly, in designing a particular 
curriculum, these recurring con- 
cepts must be communicated in an 
effective manner;  it is important to 
note that the appropriate use of  the 
recurring concepts is an essential 
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element in the implementation of  
curricula and courses based upon 
the specifications given in this arti- 
cle. Additionally, these concepts 
can be used as underlying themes 
that help tie together curricular 
materials into cohesive courses. 

Each recurring concept listed in 
this article 

• Occurs throughout  the discipline, 
• Has a variety of  instantiations, 
• Has a high degree o f  technologi- 

cal independence. 

Thus, a recurring concept is any 
concept that pervades the discipline 
and is independent  of  any particu- 
lar technology. A recurring concept 
is more fundamental  than any of  its 
instantiations. A recurring concept 
has established itself as fundamen- 
tal and persistent over the history 
of  computing and is likely to re- 
main so for the foreseeable future. 

In addition to the three charac- 
teristics given above, most recur- 
ring concepts 

• Have instantiations at the levels 
of  theory, abstraction and design, 

• Have instantiations in each of  the 
nine subject areas, 

• Occur generally in mathematics, 
science and engineering. 

These additional points make a 
strong assertion concerning the 
pervasiveness and persistence of  
most of  the recurring concepts. Not 
only do they recur throughout  the 
discipline, they do so across the 
nine subject areas and across the 
levels of  theory, abstraction and 
design. Furthermore,  most are in- 
stances of  even more general con- 
cepts that pervade mathematics, 
science and engineering. 

The following is a list of  12 re- 
curring concepts that are identified 
as fundamental  to computing. Each 
concept is followed by a brief de- 
scription. 

Binding: the processes of  making 
an abstraction more concrete by 
associating additional properties 
with it. Examples include associat- 

ing (assigning) a process with a pro- 
cessor, associating a type with a 
variable name, associating a library 
object program with a symbolic ref- 
erence to a subprogram, instantia- 
tion in logic programming,  associ- 
ating a method with a message in an 
object-oriented language, creating 
concrete instances from abstract 
descriptions. 

Complexity of large problems: the 
effects of  the nonlinear increase in 
complexity as the size of  a problem 
grows. This is an important  factor 
in distinguishing and selecting 
methods that scale to different data 
sizes, problem spaces, and program 
sizes. In large programming proj- 
ects, it is a factor in determining the 
organization o f  an implementation 
team. 

Conceptual and formal models: 
various ways of  formalizing, char- 
acterizing, visualizing and thinking 
about an idea or problem. Exam- 
ples include formal models in logic, 
switching theory and the theory of  
computation, programming lan- 
guage paradigms based upon for- 
mal models, conceptual models 
such as abstract data types and se- 
mantic data models, and visual lan- 
guages used in specifying and de- 
signing systems, such as data flow 
and entity-relationship diagrams. 

Consistency and completeness: 
concrete realizations o f  the con- 
cepts of  consistency and complete- 
ness in computing, including re- 
lated concepts such as correctness, 
robustness, and reliability. Consis- 
tency includes the consistency of  a 
set of  axioms that serve as a formal 
specification, the consistency of  
theory to observed fact, and inter- 
nal consistency of  a language or in- 
terface design. Correctness can be 
viewed as the consistency of  compo- 
nent or  system behavior to stated 
specifications. Completeness in- 
cludes the adequacy of  a given set 
of  axioms to capture all desired 
behaviors, the functional adequacy 
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of software and hardware systems, 
and the ability of  a system to behave 
well under  error  conditions and 
unanticipated situations. 

Efficiency: measures of  cost rela- 
tive to resources such as space, 
time, money, and people. Examples 
include the theoretical assessment 
of  the space and time complexity of  
an algorithm, the efficiency with 
which a certain desirable result 
(such as the completion of  a project 
or the manufacture of  a compo- 
nent) can be achieved, and the effi- 
ciency of  a given implementation 
relative to alternative implementa- 
tions. 

Evolution: the fact of  change and 
its implications. This involves the 
impact of  change at all levels and 
the resiliency and adequacy of  ab- 
stractions, techniques and systems 
in the face of  change. Examples 
include the ability of  formal models 
to represent aspects of  systems that 
vary with time, and the ability of  a 
design to withstand changing envi- 
ronmental demands and changing 
requirements, tools and facilities 
for configuration management. 

Levels of  abstraction: the nature 
and use of  abstraction in comput- 
ing; the use of  abstraction in man- 
aging complexity, structuring sys- 
tems, hiding details, and capturing 
recurring patterns; the ability to 
represent an entity or system by 
abstractions having different levels 
of  detail and specificity. Examples 
include levels of  hardware descrip- 
tion, levels of  specificity within an 
object hierarchy, the notion of  ge- 
nerics in programming languages, 
and the levels of  detail provided in 
a problem solution from specifica- 
tions through code. 

Ordering in space: the concepts of  
locality and proximity in the disci- 
pline o f  computing. In addition to 
physical location, as in networks or 
memory, this includes organiza- 
tional location (e.g., of  processors, 

processes, type definitions, and as- 
sociated operations) and conceptual 
location (e.g., software scoping, 
coupling, and cohesion). 

Ordering in time: the concept of  
time in the ordering of  events. This 
includes time as a parameter in for- 
mal models (e.g., in temporal logic), 
time as a means of  synchronizing 
processes that are spread out over 
space, time as an essential element 
in the execution of  algorithms. 

Reuse: the ability of  a particular 
technique, concept or system com- 
ponent  to be reused in a new con- 
text or situation. Examples include 
portability, the reuse of  software 
libraries and hardware compo- 
nents, technologies that promote 
reuse of  software components, and 
language abstractions that promote 
the development of  reusable soft- 
ware modules. 

Security: the ability o f  software and 
hardware systems to respond ap- 
propriately to and defend them- 
selves against inappropriate and 
unanticipated requests; the ability 
of  a computer  installation to with- 
stand catastrophic events (e.g., nat- 
ural disasters and attempts at sabo- 
tage). Examples include type- 
checking and other concepts in 
programming languages that pro- 
vide protection against misuse of  
data objects and functions, data 
encryption, granting and revoking 
of  privileges by a database manage- 
ment system, features in user inter- 
faces that minimize user errors, 
physical security measures at com- 
puter facilities, and security mecha- 
nisms at various levels in a system. 

Trade-offs and consequences: the 
phenomenon of  trade-offs in com- 
puting and the consequences of  
such trade-offs; and the technical, 
economic, cultural and other ef- 
fects of  selecting one design alter- 
native over another. Trade-offs are 
a fundamental  fact of  life at all lev- 
els and in all subject areas. Exam- 

pies include space-time trade-offs 
in the study of  algorithms, trade- 
offs inherent in conflicting design 
objectives (e.g., ease of  use versus 
completeness, flexibility versus sim- 
plicity, low cost versus high reliabil- 
ity and so forth), design trade-offs 
in hardware, and trade-offs implied 
in attempts to optimize computing 
power in the face of  a variety of  
constraints. 

In constructing curricula from 
the overall specifications o f  the 
Task Force, curriculum designers 
must be aware of  the fundamental  
role played by recurring concepts. 
That  is, a recurring concept (or a 
set of  recurring concepts) can help 
to unify the design of  a course, a 
lecture, or a laboratory exercise. 
From the instructor's perspective 
(and also from the student's per- 
spective), a course is rarely satisfy- 
ing unless there is some "big idea" 
that seems to hold disparate ele- 
ments together. We see the use of  
recurring concepts as one method 
for unifying the material this way. 

At the level of  the entire curricu- 
lum, the recurring concepts also 
play a unifying role. They can be 
used as threads that tie and bind 
different courses together. For ex- 
ample, in introducing the concept 
of  co~istency as applied to language 
design in a programming language 
course, the instructor might ask 
students to consider other contexts 
in which consistency played an im- 
portant role, such as in a previous 
software design or  computer  orga- 
nization course. By pointing out 
and discussing the recurring con- 
cepts as they arise, instructors can 
help portray computing as a coher- 
ent discipline rather than as a col- 
lection o f  unrelated topics. 

From Principles to Curriculum 
An undergraduate  curriculum in 
computing should provide each 
graduate with a reasonable level of  
instruction in all of  the subject areas 
identified above. This allows each 
graduate to achieve a breadth of  
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understanding across the entire 
discipline rather than just in a few 
of  its parts. Breadth is ensured in 
the present guidelines by way of  the 
common requirements. 

The undergraduate curriculum 
should also provide reasonable 
depth of  study in some of  the nine 
subject areas o f  the common re- 
quirements. While the particular 
way in which subject area depth is 
achieved will vary among different 
types o f  programs, it is essential 
that depth of  study be achieved in 
one way or  another. Depth is en- 
sured in the present guidelines by 
way of  tile advanced~supplemental top- 
ics (see following discussion). 

Among the three processes-- 
theory, abstraction, and design-- i t  
is fair to assume that some under- 
graduate programs emphasize 
more theory than design, while oth- 
ers emphasize more design than 
theory. However, the process of  
abstraction will normally be promi- 
nent in all undergraduate  curric- 
ula. Theory,  abstraction, and de- 
sign are included throughout  the 
common requirements, and are re- 
inforced by the integration of  labo- 
ratory work with subject matter in a 
principled and thorough way. 

To support the development of  
maturity in the mathematical and 
scientific aspects of  computing, an 
undergraduate  curriculum should 
also include certain mathematics 
and science subject matter to com- 
plement the subject matter in the 
discipline itself. Similarly, to sup- 
port the development of  maturity 
in the scientific and engineering 
aspects of  the discipline, the pres- 
ent guidelines recommend that stu- 
dents regularly engage in labora- 
tory work and other educational 
experiences. 

An overview of  a complete un- 
dergraduate program in comput- 
ing can be summarized as shown in 
Figure 1. This summary provides a 
general level of  guidance for imple- 
menting undergraduate  programs 
in the discipline. There, the need to 
recognize different institutional 

PRINCIPLES: 

u I G U R E  1 

A Complete Curriculum and Its Underlying Principles 

contexts and programmatic goals is 
accommodated by the box in that 
figure labeled Other Degree Require- 
ments. 

Assuring Breadth and Depth 
To realize the breadth require- 
ments, undergraduate  programs 
should provide a broad selection o f  
topics taken from all nine subject 
areas of  computing. However, be- 
cause different institutions will 
want to fulfill these common re- 
quirements in different ways, they 
are not presented as a single pre- 
scribed set of  courses. Instead, the 
common requirements'  topics are 
presented as a collection of  knowl- 
edge units. These can be combined 
in various ways to form different 
sets of  courses, or implementations, in 
different undergraduate  settings. 
Further discussion of  constructing 
courses out of  knowledge units 
appears later, and many examples 
are given in the full report  itself. 

To realize the depth require- 
ments, different institutions will 
offer additional requirements and 
electives in accordance with their 

overall educational missions, fac- 
ulty size, and subject area expertise. 
The  full report  describes a number  
of  advanced and supplemental top- 
ics that provide depth of  study in 
the nine areas of  the discipline of  
computing. 

The ROle of Programming 
The term programming is under- 
stood to denote the entire collection 
of  activities that surround the de- 
scription, development, and effec- 
tive implementation o f  algorithmic 
solutions to well-specified prob- 
lems. While this definition is not to 
be construed to mean simply "cod- 
ing in a particular programming 
language or for a particular ma- 
chine architecture," it does neces- 
sarily include the mastery of  highly 
stylized skills in a particular pro- 
gramming language or languages. 
Thus, fluency in a programming 
language is an essential attribute of  
the mastery o f  programming. On 
the other hand, programming is 
not to be construed so broadly as to 
subsume all of  the activities in- 
volved in software methodology 
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and engineering. The  latter is a 
much broader notion and includes, 
for example, the development of  
specifications and the maintenance 
of  software. 

Programming occurs in all nine 
subject areas in the discipline of  
computing. It is part of  the design 
process, it is used to implement the 
models that occur in the abstraction 
process, and sometimes it even oc- 
curs in the process of  proving a the- 
oretical result. Thus, the role of  
programming in the undergradu- 
ate curriculum is also multidimen- 
sional; students develop programs 
during the design of  software, they 
exercise and modify programs dur- 
ing other laboratory experiments, 
and they read programs in the nor- 
mal course of  studying subject mat- 
ter in textbooks and the published 
literature. In this latter sense, pro- 
gramming is an extension of  the 
basic skills that students and profes- 
sionals normally use in day-to-day 
communication. 

Mastery of  programming can be 
accomplished in several ways dur- 
ing an undergraduate 's  career. 
First, a substantial portion of  the 
common requirements'  laboratory 
work contains programming as an 
essential part. For example, the 
knowledge unit SEI : Fundamental 
Problem Solving Concepts requires 
laboratory work in which students 
design, implement, and exercise 
programs in a modern program- 
ming language. Second, under- 
graduate texts in the various subject 
areas teach and use conventional 
programming techniques through- 
out their presentations of  subject 
matter. Lectures in courses 
throughout  the curriculum also use 
well-established styles of  program- 
ming to explain or clarify algorith- 
mic concepts. Third, the computing 
literature is replete with programs 
and examples of  programming 
methodology, and undergraduates 
become familiar with this literature 
during their studies. Instructors 
should take care to present exam- 
ples of  good programming style for 

students to study and emulate. 
Thus, undergraduates should 

develop an early understanding of  
programming. They should con- 
tinue to actively engage in the mas- 
tery and use of  programming para- 
digms and languages throughout  
their coursework, homework, and 
laboratory exercises. 

It should be noted here that the 
common requirements do not as- 
sume that students will have any 
experience with programming be- 
fore taking their first course in the 
discipline. However, increasing 
numbers of  students do gain such 
experience in secondary school. 
Many feel the amount  of  attention 
traditionally paid to the syntax of  a 
programming language in the first 
course is excessive, and ought  to be 
replaced with a more balanced in- 
troduction to the discipline. 

For these reasons, PR: Introduc- 
tion to a Programming Language is 
defined as a separate knowledge 
unit, but is not a required part of  the 
common requirements. That  is, 
most programs will be able to intro- 
duce a programming language in 
conjunction with other knowledge 
unit material, especially the one 
named SE1, during the scheduled 
laboratory periods that accompany 
the first course. For those programs 
that do require a more careful 
treatment of  this topic, the optional 
knowledge unit PR: Introduction to a 
Programming Language can be 
added to the common require- 
ments to fulfill this need. 

The Role of Laboratories 
The report  Computing as a Discipline 
makes a clear statement about the 
purpose and structure of  labora- 
tory work in the undergraduate 
curriculum; this article expands 
upon that statement by identifying 
in more detail how these very im- 
portant laboratory activities can be 
integrated into an undergraduate 
curriculum. An undergraduate  
curriculum in computing is ideally 
comprised of  an integrated pro- 
gram of  lectures and laboratory 

experiences. The  learning process 
occurs as a result of  interaction 
among students, instructors, and 
the subject matter. 

Laboratories demonstrate the 
application of  principles to the de- 
sign, implementation, and testing 
of  software and hardware systems. 
Laboratories also emphasize tech- 
niques that utilize contemporary 
tools and lead to good experimental 
methods, including the use of  mea- 
suring instruments, diagnostic aids, 
software and hardware monitors, 
statistical analysis of  results, and 
oral and written presentation of  
findings. The laboratories should 
augment  the instruction that takes 
place in the lectures by having 
clearly stated objectives that com- 
plement the lectures. 

The  laboratory exercises in- 
cluded in the Suggested Laboratories 
part of  each knowledge unit pro- 
vide a diverse set of  learning expe- 
riences. Some involve the execution 
of  hardware, software, or simula- 
tors to observe some phenomenon,  
either by data collection or by visu- 
alization. Others are designed to 
increase student expertise in soft- 
ware methodology through the 
development of  alternative design 
and implementation techniques. 
Still others are similar to science 
experiments because they involve 
hypothesis formation and testing. 
These types of  laboratory experi- 
ences combine to increase student 
problem-solving ability, analytical 
skill, and professional judgment.  

In the presentation of  laborato- 
ries among the knowledge units, 
two distinct types of  laboratory 
work are offered. These are called 
open laboratories and closed labora- 
tories. An open laboratory is an 
unsupervised assignment that may 
involve the use of  a computer, soft- 
ware, or hardware for its comple- 
tion. Students can complete an 
open laboratory at their own con- 
venience as it does not require di- 
rect supervision. Conventional pro- 
gramming assignments are often 
done in an open laboratory setting. 
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A closed laboratory is a sched- 
uled, structured, and supervised 
assignment that involves the use of  
computing hardware, software, or 
instrumentation for its completion. 
Students complete a closed lab by 
attending a scheduled session, usu- 
ally 2 -3  hours long, at a specific 
facility. Supervision is provided by 
the instructor or  a qualified assis- 
tant who is familiar with the details 
of  the assignment. The  specialized 
equipment, software, and supervi- 
sion offered by closed laboratories 
makes them more desirable than 
open laboratories in certain situa- 
tions. Closed laboratories are par- 
ticularly important in situations 
where the assignment relies on in- 
structor-student interaction or a 
team effort among students to com- 
plete the work. For example, the 
use of  software tools that facilitate 
the production o f  large-scale soft- 
ware, CAD programs, or other 
packages o f  considerable complex- 
ity norrrmlly require the initial 
guidance and advice of  an expert. 

Whether  the lab is open or  
closed, the facility should be staffed 
by a knowledgable person during 
all scheduled laboratory hours. 
Staffing ,ensures immediate feed- 
back and. guidance during times 
when students are working inde- 
pendently on laboratory assign- 
ments. 

The designation open or closed, 
along with the laboratories them- 
selves, should be used as sugges- 
tions, or statements o f  preference 
by the Task Force, rather than pre- 
scriptions for all programs to fol- 
low. That  is, some laboratories that 
are designated as closed may be 
done as open laboratories and vice 
versa. This choice may depend on 
how the particular lab experience 
and objectives fit into the curricu- 
lum as well as the available facilities 
in a particular institutional setting. 

Whether  open or  closed, a labo- 
ratory assignment should always be 
carefully ]planned by the instructor. 
Descriptions that include clear 
statements of  purpose, methodol- 

ogy, and results should be carefully 
prepared for the students. Labora- 
tory assignments should be realis- 
tically designed, so that an average 
student can complete the work in 
the allotted time. It is particularly 
~mportant to make sure that ade- 
quate facilities are available to sup- 
port  the goals of  each laboratory 
assignment. 

Completion of  a laboratory as- 
signment should be accompanied 
by a written or  oral report  by the 
student. Written reports should 
reflect a disciplined and mature 
writing style, in addition to the suc- 
cessful completion o f  the laboratory 
work itself. It is expected that there 
will be homework in addition to 
laboratory assignments, and this 
work should also be well-integrated 
with the subject matter of  the lec- 
tures. 

Other Educational Experiences 
Beyond the subject matter of  the 
curriculum, undergraduates in 
computing should have additional 
experiences that will help them 
develop the capacity for critical 
thinking, problem solving, research 
methods, and professional develop- 
ment. These experiences can be 
incorporated into the classroom 
lectures, laboratories, and extracur- 
ricular activities of  the undergradu-  
ate program. These additional ex- 
periences generally fall into three 
categories: 

1. working as part of  a team 
2. written and oral communication 
3. familiarization with the profes- 

sion 

For further  discussion of  these re- 
quirements, readers are encour- 
aged to consult the full report. 

The Common Requirements 
The common requirements form 
the basis for a curriculum in com- 
puting by providing a platform of  
knowledge that is considered essen- 
tial for all students who concentrate 
in the discipline. These are not the 
only topics that should be covered, 

yet they contain the basic body of  
knowledge that should be part of  
every curriculum. The  common 
requirements are expressed here as 
knowledge units rather than com- 
plete courses, to allow different 
programs to package the subject 
matter in different ways. Such vari- 
ations will occur because different 
institutions and types of  programs 
will have different pedagogical pri- 
orities, educational goals, and gen- 
eral constraints within which they 
implement the common require- 
ments. 

While every knowledge unit is 
considered to be essential, the 
depth and breadth o f  coverage for 
each topic therein will not be the 
same. For example, the knowledge 
unit AL6: Sorting and Searching rec- 
ommends that various sorting and 
searching algorithms be covered in 
six lecture hours and associated lab- 
oratory work. However, this is only 
about two weeks' time. Thus, only a 
few of  the multitude of  sorting 
techniques can be covered in any 
appreciable dep th - -pe rhaps  inser- 
tion sort, heap sort, and quicksort--  
while various other sorting tech- 
niques can be covered in a more 
surveylike fashion. Instructors will 
inevitably make tradeoffs between 
depth and breadth o f  coverage, 
given the constraints of  the number  
o f  lectures in a knowledge unit, in 
the same way they do now with cur- 
rent textbooks. Furthermore,  some 
knowledge units offer only a broad 
level of  coverage o f  a topic (see, for 
instance, the knowledge units des- 
ignated as PL1, OS1, or AI1). Addi- 
tional depth in these subjects can be 
obtained only by exceeding the cov- 
erage recommended by the com- 
mon requirements, either in the 
coverage of  the knowledge unit, or  
in an advanced course. 

Organizing the Common 
Requirements: The Knowledge 
Unit 
In the following discussion, a knowl- 
edge unit is understood to designate 
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a coherent collection of subject 
matter that is so fundamental 
within one of the nine subject areas 
of the discipline listed earlier, or 
within the area of social, ethical, 
and professional issues (SP), that it 
should occur in every undergradu- 
ate curriculum. While the subject 
matter of a knowledge unit is often 
related to other knowledge units in 
the common requirements by way 
of a prerequisite structure, it can 
nevertheless be introduced within 
any of several alternative course 
structures. 

For easy cross-referencing 
among the knowledge units, Table 
I gives the two-letter tags used to 
identify each of the nine subject 
areas, the additional area of social 
and professional context (SP), and 
the optional introduction to a pro- 
gramming language (PR). 

The collected knowledge units 
are organized by subject area. Each 
knowledge unit within a subject 
area is identified by the tag for that 
subject area. For example, the 
knowledge units in the area of  Al- 
gorithms and Data Structures are 
identified by the tags ALl, AL2, 
AL3, and so forth. 

The following sample knowledge 
unit illustrates the presentation 
style for knowledge units: 

ALG: Sorting and Searching 
Comparison of various algorithms 
for sorting and searching, with 

focus on complexity and space ver- 
sus time trade-offs. 

Recurring Concepts: complexity of 
large problems, consistency and 
completeness, efficiency, trade-offs 
and consequences. 

Lecture Topics: (six hours minimum) 
1. O(n 2) sorting algorithms (e.g., 

insertion and selection sort); 
space-time complexity: best, 
worst cases 

2. O(n log n) sorting algorithms 
(e.g., quicksort, heapsort, merge- 
sort); space-time complexity: 
best, worst cases 

3. Other sorting algorithms (e.g., 
Shell sort, bucket sort, radix 
sort) 

4. Comparisons of algorithms 
5. Serial search, binary search and 

binary search tree; space-time 
complexity: best, worst cases 

6. Hashing, collision resolution 

Suggested Laboratories: (closed) Cor- 
roboration of theoretical complex- 
ity of selected sorting and searching 
algorithms by experimental meth- 
ods, identifying differences among 
best, average, and worst case behav- 
iors. 

Connections: 
Related to: AL5, AL8 
Prerequisites: AL4 
Requisite for: AI2, OS7, PL9 

Architecture AR 

Database and Information Retrieval DB 

Programming Languages PL 

Software Methodology and Engineering SE 

Table 2 offers a complete list of the 
titles of the knowledge units that 
comprise the common require- 
ments. While these titles suggest 
something about the knowledge 
units' contents, a detailed presenta- 
tion of each one is given in the full 
report [4]. 

The Advanced and 
Supplemental Curriculum 
A complete curriculum will include 
not only the common require- 
ments, but also certain additional 
material. This advanced and sup- 
plemental material gives each indi- 
vidual student an opportunity to 
study the subject areas of  the disci- 
pline in depth. The curriculum 
should provide depth of study in 
several of the nine subject areas 
beyond that provided by the com- 
mon requirements. Students nor- 
mally achieve that depth by com- 
pleting several additional courses in 
this part of the curriculum. The 
number of such courses will vary in 
accordance with institutional 
norms. The sample implementa- 
tions in the appendix of the full 
report illustrate these kinds of  vari- 
ations. 

The topics in the following list 
should be considered as areas 
where courses may be developed to 
provide in-depth study in advanced 
undergraduate and graduate 
courses. Other topics beyond these 
are important as well, but will vary 
with the particular interests and 
expertise of the faculty in individ- 
ual programs. However, these top- 
ics tend to be so significant to the 
discipline at this time that several of 
them ought to appear among the 
advanced courses offered by any 
undergraduate program. 

Advanced Operating Systems 
* Advanced Software Engineer- 

ing 
Analysis of Algorithms 

* Artificial Intelligence 
Combinatorial and Graph Al- 
gorithms 
Computational Complexity 
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* Computer  Networks 
* Computer  Graphics 

Computer -Human Interface 
* Computer  Security 
* Database and Information Re- 

trieval 
Digital Design Automation 
Fault-Tolerant Computing 
Information Theory 
Modeling and Simulation 
Numerical Computation 

* Parallel and Distributed Com- 
puting 
Performance Prediction and 
Analysis 
Principles of  Computer  Archi- 
tecture 
Principles of  Programming 
Languages 

* Programming Language 
Translation 
Real-Time Systems 
Robotics and Machine Intelli- 
gence 
Semantics and Verification 
Societal Impact of  Computing 

* Symbolic Computation 
* Theory of  Computation 
* VLSI System Design 

Several of  the topics in this list are 
marked with an asterisk (*). This 
denotes that a more complete de- 
scription is given in the full report  
Computing Curricula 1991. Those 
descriptions are intended to give 
more concrete information that will 
assist in developing courses in these 
topic areas. 

Mathematics and Science 
Requirements 
An understanding of  mathematics 
and science is important for stu- 
dents who concentrate their studies 
in computing. 

Mathematical maturity, as com- 
monly attained through logically 
rigorous mathematics courses, is 
essential to successful mastery of  
several fundamental  topics in com- 
puting. Thus, all computing stu- 
dents should take at least one-half 
year ~ of  mathematics courses. 
These courses should cover at least 
the following subjects: 

Discrete Mathematics: sets, func- 
tions, elementary propositional and 
predicate logic, Boolean algebra, 
elementary graph theory, matrices, 
proof  techniques (including induc- 
tion and contradiction), combina- 
torics, probability, and random 
numbers 
Calculus: differential and integral 
calculus, including sequences and 
series and an introduction to differ- 
ential equations 

It should be noted that some of  the 
discrete mathematics topics should 
be treated early in the curriculum, 
since they are needed for some of  
the basic knowledge units. 

The  half-year mathematics re- 
quirement should also include at 
least one of  the following subjects: 

Probability: discrete and continu- 
ous, including combinatorics and 
elementary statistics 
Linear Algebra: elementary, in- 
cluding matrices, vectors, and lin- 
ear transformations 
Advanced Discrete Mathematics: a 
second course covering more ad- 
vanced topics in discrete mathemat- 
ics 
Mathematical Logic: propositional 
and functional calculi, complete- 
ness, validity, proof, and decision 
problems 

Many implementations will have 
additional mathematics require- 
ments beyond this minimum set. 
For example, professionally ori- 
ented programs will normally re- 
quire five or six mathematics 
courses. Students who wish to pur- 
sue graduate study in computing 
are often well-advised to take more 
mathematics. 

Science is important in comput- 
ing curricula for three reasons. 
First, as well-educated scientists and 
engineers, graduates of  computing 
programs should be able to appre- 
ciate advances in science because 

2We mean the equivalent o f  one-hal f  aca- 
demic year  o f  full-time study. Typically, this 
would be four  or  five semester-long courses. 

they have an impact on society and 
on the field of  computing. Second, 
exposure to science encourages stu- 
dents to develop an ability to apply 
the scientific method in problem 
solving. Third,  many of  the appli- 
cations students will encounter 
after graduation are found in the 
sciences. 

For these reasons, all computing 
curricula should include a compo- 
nent that incorporates material 
from the physical and life sciences. 
Ideally, courses in this component  
are those which are designed for 
science majors themselves. 

Programs intended to prepare 
students for entry into the profes- 
sion should require a minimum of  
one-half year of  science. This nor- 
mally includes a year-long course in 
a laboratory science (preferably 
physics) and additional work in the 
natural sciences. 

Building a Curriculum 

Overall Design Considerations 
A curriculum for a particular pro- 
gram depends on many factors, 
such as the purpose of  the pro- 
gram, the strengths o f  the faculty, 
the backgrounds and goals of  the 
students, instructional support re- 
sources, infrastructure support 
and, where desired, accreditation 
criteria. Each curriculum will be 
site-specific, shaped by those re- 
sponsible for the program who 
must consider factors such as insti- 
tutional goals, opportunities and 
constraints, local resources, and the 
prior preparation of  students. 

Developing a curriculum in- 
volves a design process similar to 
others with which computer  scien- 
tists and engineers are familiar. A 
successful implementation will 
grow from a well-conceived and 
well-articulated specification of  the 
purpose of  the curriculum, the con- 
text in which the curriculum will be 
delivered, and other external op- 
portunities and constraints. As with 
systems, the success of  the imple- 
mentation of  a curriculum depends 
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on the care with which it is de- 
signed. 

All curr iculum designs, includ- 
ing but  not limited to comput ing 
curricula, should be guided by cer- 
tain principles. First, the purpose  of  
a curr iculum is to educate students. 
The  curr iculum design therefore  
should focus on providing a way for 
students to gain the desired knowl- 
edge, expert ise and experience by 
the time they graduate.  The  out- 
come expected for students should 
drive the curr iculum design. 

Second, a curr iculum is more 
than a set of  isolated courses. The re  
are unifying ideas and goals that 
span the whole curriculum. This 
article has included the discussion 
of  recurr ing  concepts as an indica- 
tor of  those ideas that should be 
pervasive in a comput ing  curricu- 
lum. 

Thi rd ,  there  are many ways for 
students to learn beyond the stan- 
da rd  lecture delivery format.  Labo- 
ratories, in particular,  present  
many opportuni t ies  for innovation. 
Faculty members  should apply cre- 
ative energy to developing alterna- 
tive instructional methods.  

Fourth,  every environment  has 
constraints that must be consid- 
ered. A curr iculum plan must not 
be overly optimistic nor  overly re- 
strictive, but  should be realistic, 
both for students and for faculty. 
For  example,  a curr iculum plan 
that requires a s tudent  to take four  
comput ing courses dur ing  the last 
term of  the senior year invites a 
variety of  problems. 

Fifth, comput ing  is more  than 
jus t  a collection of  facts and algo- 
rithms. It is a dynamic,  vital disci- 
pline that offers many challenges 
and interest ing problems,  exciting 
results, and imaginative applica- 
tions. The  curr iculum should try to 
impar t  this sense of  exci tement to 
students; the material  may be diffi- 
cult, but  it need not be dull. 

Designing a comput ing curricu- 
lum adds another  set of  special con- 
cerns. The  rapid  change in the dis- 
cipline itself demands  that a 

comput ing curr iculum be dynamic, 
not static. It must  be built so that it 
can evolve along with the subject 
matter.  All curricula should be 
evaluated periodically to see that 
they are meet ing their  goals; com- 
put ing curricula should be evalu- 
ated for content  to be sure they are 
up-to-date.  Many depar tments  also 
face changes that are caused by 
changing infrastructure,  such as 
their  organizations, enrollments,  
and funding levels. 

Another  concern in comput ing  
curricula comes from the fluid na- 
ture o f  theory in the discipline. As 
comput ing is based on artifacts in 
addi t ion to physical laws, many of  
its "fundamentals"  are subject to 
constant re in terpre ta t ion and re- 
evaluation. Thus,  the theory of  
comput ing  evolves more  rapidly 
than does theory in other  sciences. 

Computing,  however, has one 
great  advantage for curr iculum 
designers.  I t  provides f requent  
opportuni t ies  for accomplishing 
mult iple goals th rough  one instruc- 
tional experience.  Activities can be 
leveraged for several purposes.  For  
example,  a discussion of  loops or  
recursion can simultaneously intro- 
duce the concept of  searching by 
the use of  appropr ia te ly  chosen 
examples.  

Designing Courses from 
Knowledge Units 
The knowledge units enumerated 
earlier  and described in the full 
r epor t  specify the scope of  topics 
that all comput ing students should 
study. The  lecture hours associated 
with each knowledge unit  give an 
approximate  indication of  the 
depth  to which these topics should 
be covered; we intend this to repre-  
sent the min imum coverage that a 
typical p rogram should ensure.  
The  prerequisi te structure suggests 
that some sequencing is required in 
the composit ion of  courses out  of  
knowledge units, but  the size of  the 
units allows many organizational  
options. Additionally,  material  in a 
knowledge unit  may be split and 

covered at d i f ferent  times and in 
di f ferent  courses, if deemed  appro-  
priate. 

The  knowledge units do not 
need to be covered completely in 
what would be identif ied as a set of  
"core courses," as long as they are 
all covered in one requi red  course 
or  another .  Fur thermore ,  some 
parts may be covered either in a 
s tandard  class setting or  in a labora- 
tory setting. Thus,  the knowledge 
units of  the common requirements  
can be combined in various ways to 
form courses. In  this activity, one 
may use the following guidelines: 

• Knowledge units should be com- 
bined so that the composite sub- 
ject  mat ter  forms a coherent  body 
of  topics for an undergradua te .  
In  some cases, one or  more  of  the 
recurr ing  concepts can provide 
the "glue," while in o ther  cases 
one of  the nine subject areas can 
provide a basis for course organi-  
zation. 

• The  combined set of  courses that 
comprise an implementat ion 
should have a prerequisi te struc- 
ture that is consistent with the 
prerequisi te s tructure that exists 
among their  consti tuent knowl- 
edge units. 

• The  combined set of  courses that 
comprise the implementa t ion 
should cover all of  the knowledge 
units that make up the common 
requirements.  As specified here,  
these total about  271 lecture 
hours,  which is equivalent to 
about seven one-semester  
courses. 3 This total does not in- 
clude time spent  in scheduled 
laboratory work, nor  does it in- 
clude the advanced and supple- 
mentary  coursework that pro-  
vides dep th  of  study for all 
majors. 

Implementa t ions  may, of  course, 
exceed this min imum by assigning 

3When the optional 12-hour knowledge unit 
PR: Introduction to a Programming Language is 
incorporated into the curriculum, the total 
number  of lecture hours increases to about 
283. 
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additional depth of  coverage or 
topic selections beyond those that 
are suggested in the common re- 
quirements. 

The following are two sample 
courses, an introductory course 
entitled "Problem-solving, Pro- 
grams, and Computers" and an- 
other course entitled "Data Struc- 
tures and Algorithms," that result 
from combining selected knowl- 
edge units under  the foregoing 
guidance. The first of  these courses 
takes knowledge units (KUs) from a 
number  o f  different subject areas, 
and has "consistency and complete- 
ness" as a recurring concept. The 
second of  these courses has all of  its 
knowledge units taken from a sin- 
gle subject area. 

Problem Solving, Programs, and 
Computers 
Topic Summary: This course has 
three major themes: a rigorous in- 
troduction to the process of  algo- 
rithmic problem solving, an intro- 
duction to the organization of  the 
computers upon which the result- 
ing programs run, and an overview 
of  the social and ethical context in 
which the field of  computing exists. 
Problem-solving rigor is guaran- 
teed by a commitment to the pre- 
cise specification of  problems and a 
close association between the 
problem-solving process and that 
specification. For example, the 
identification of  a loop is closely 
tied to the discovery of  its invariant, 
which in turn is motivated by the 
problem specification itself. 

Computer  organization is intro- 
duced by way of  a simple von Neu- 
mann machine model and assem- 
bler, upon which students can 
develop and exercise simple pro- 
grams. Elements of  the fetch- 
execute cycle, runtime data repre- 
sentation, and machine language 
program structure are thereby re- 
vealed. 

This course contains 40 lecture 
hours of  KU topics, and is taught as 
a four-credit-hour course. A sched- 
uled weekly laboratory is used to 

teach programming language syn- 
tax and machine organization, as 
well as to support student program- 
ming exercises. 

Prerequisites: An introduction to 
logic, as would usually be found at 
the beginning of  a discrete mathe- 
matics course (that can be taken 
concurrently) 
Knowledge units: AL3 (3/3), AL6 (2/ 
6), AR3 (2/3), AR4 (7/15), NU1 (1/ 
3), NU2 (2/4), PL1 (2/2), PL3 (2/2), 
PL4 (1/4), SE1 (11/16), SE5 (4/8), 
SP1 (3/3) 4 

Data Structures and Analysis of 
Algorithms 
Topic Summary: This course covers 
data structures and algorithms in 
some depth. Topics covered in- 
clude data structures, a more for- 
mal treatment of  recursion, an in- 
troduction to basic problem-solving 
strategies, and an introduction to 
complexity analysis, complexity 
classes, and the theory of  comput- 
ability and undecidability. Sorting 
and searching algorithms are pre- 
sented in the light of  the presenta- 
tion of  problem-solving strategies 
and complexity issues. Finally, par- 
allel and distributed algorithms are 
introduced briefly. 

This course is taught in three lec- 
tures and a two-hour laboratory per 
week. It contains 33 lecture hours 
devoted to KU topics and their lab- 
oratories. 
Prerequisites: "Computing II" 
Knowledge units: ALl  (9/13), AL3 
(2/3), AL4 (4/4), AL5 (4/4), AL6 (3/ 
6), AL7 (3/6), AL8 (6/6), AL9 (2/3) 
The full report  contains many 
more examples of  course descrip- 
tions that are appropriate in a vari- 
ety of  institutional settings. 

Integrating the Curriculum into a 
Course of Study 
The computing curriculum will 

4In the list of  knowledge units that accom- 
pany a particular course description, the nota- 
tion p/q means that p lecture years are used 
out of  a total of  q hours that are available 
from the knowledge unit. Thus,  when p = q 
the entire knowledge unit is used in that 
course, 

have to be developed to meet insti- 
tutional requirements and should 
take advantage of  institutional 
strengths. Ultimately, the comput- 
ing curriculum will be integrated 
into a complete four-year course of  
study. 

Some suggestions for steps to 
start building a curriculum are: 

• Identify goals of  the program, 
focusing on student outcomes. 

• Identify strengths of  the faculty. 
• Identify constraints of  the local 

situation. 
• Establish a plan and schedule for 

design, implementation, evalua- 
tion, modification, and transition. 

• Design and implement the cur- 
riculum components. 

Related Concerns 
The report  Computing Curricula 
1991 addresses the relationship 
between its recommendations with 
each of  the following topics. For 
further details, readers are encour- 
aged to consult the report  itself. 

• Faculty and Staff 
• Laboratory Resources 
• Service Courses and Joint Degree 

Programs 
• Library Support  
• Relationship with Accreditation, 

Placement Tests, and Achieve- 
ment Tests 

Summary 
This article summarizes a specifica- 
tion for implementing undergrad- 
uate programs in computing, as 
opposed to a single curriculum. 
This approach is required because 
of  the need to serve a large and di- 
verse constituency. The ultimate 
success of  this approach will there- 
fore depend strongly upon the cre- 
ative energies of  faculty members at 
the various institutions that support 
undergraduate  programs in com- 
puting. 

This specification acknowledges 
the primary importance of  the fol- 
lowing elements in undergraduate  
computing curricula: nine major 
subject areas; theory, abstraction 
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and de,sign; recurring concepts; the 
social and professional context; 
mathematics and science; language 
and communication; and inte- 
grated laboratory experience. Suc- 
cessful undergraduate programs 
that follow from this specification 
will pay close attention to each of 
these elements in their implemen- 
tations 

The appendix of the full report 
Computing Curricula 1991 contains 
the following 12 sample curricula 
that are provided as "proofs of con- 
cept" for this specification. 

• Implementation A: A Program in 
Computer Engineering 

• Implementation B: A Program in 
Computer Engineering 
(Breadth-First) 

• Implementation C: A Program in 
Computer Engineering (Minimal 
Number of Credit-Hours) 

• Implementation D: A Program in 
Computer Science 

• Impl~ementation E: A Program in 
Computer Science (Breadth- 
First) 

• Impllementation F: A Program in 
Computer Science (Theoretical 
Emphasis) 

• Imp]lementation G: A Program in 
Computer Science (Software 
Engineering Emphasis) 

• Implementation H: A Liberal 
Arts Program in Computer Sci- 
ence (Breadth-First) 

• Implementation I: A Program in 
Computer Science and Engineer- 
ing 

• Implementation J: A Liberal Arts 
Program in Computer Science 

• Implementation K: A Liberal 
Arts Program in Computer Sci- 
ence (Breadth-First) 

• Implementation L: A Program in 
Computer Science (Theoretical 
Emphasis) 

Acknowledgments 
The Task Force wishes to thank the 
following persons who generously 
served as reviewers for this work in 
its various stages: Narenda Ahuja, 
Donald J. Bagert, Jr., James c. Bez- 
dek, Nathaniel Borenstein, Richard 

j. Botting, Donald Bouldin, Albert 
W. Briggs, Jr., j. Glenn Brook- 
sheer, Wai-Kai Chen, Lucio 
Chiaraviglio, Neal S. Coulter, Steve 
Cunningham, Ruth Davis, Peter J. 
Denning, Scot Drysdale, Larry A. 
Dunning, Peter Durato, J. Philip 
East, Adel S. Elmaghraby, John W. 
Fendrich, Gary A. Ford, Edwin C. 
Foudriat, Donald L. Gaitros, David 
Garnick, Judith L. Gersting, Sakti 
P. Ghosh, Ratan K. Guha, Stephen 
T. Hedetniemi, Thomas T. Hewett, 
Jane Hill, Stuart Hirshfield, James 
A. Howard, John Impagliazzo, 
Greg Jones, Charles Kelemen, Wil- 
lis King, Robert L. Kruse, Yedidyah 
Langsam, Eugene Lawler, Burt 
Leavenworth, R. Rainey Little, 
Dennis Martin, Fred J. Maryanski, 
Jeffrey J. McConnell, Daniel D. 
McCracken, Catherine W. McDon- 
ald, John McPherson, David G. 
Meyer, Victor Nelson, Chris 
Nevison, Robert Noonan, Jeffrey 
Parker, Margaret Peterson, Paul 
Purdom, Arthur Riehl, David C. 
Rine, Rockford J. Ross, Richard 
Salter, G. Michael Schneider, Greg 
Scragg, Mary Shaw, Daniel P. 
Siewiorek, David L. Soldan, Harry 
W. Tyrer, Annelieses von Mayr- 
hauser, Z.G. Vranesic, Henry 
Walker, F. Garnett Walters, John 
Werth, Terry Winograd, Charles 
W. Winton, Charles T. Wright, Jr., 
and Grace Chi-Dak N. Yeung. 

It should be noted that not all of 
the reviewers agree with all of the 
recommendations in this article or 
the full report. However, all com- 
ments were carefully considered by 
the Task Force throughout this 
report's development. Additional 
thanks are due to Kathleen A. 
Heaphy for proofreading and edi- 
torial comments on various drafts 
of the report itself. [ ]  

References 
1. Accreditation Board for Engineer- 

ing and Technology, Inc. Criteria 
for Accrediting Programs in Engi- 
neering in the United States. Dec. 
1988. 

2. ACM Curriculum Committee on 
Computer Science. Curriculum 68: 

Recommendations for the under- 
graduate program in computer sci- 
ence. Commun. ACM 11, 3 (Mar. 
1968), 151-197. 

3. ACM Curriculum Committee on 
Computer Science. Curriculum 78: 
Recommendations for the under- 
graduate program in computer sci- 
ence. Commun. ACM 22, 3 (Mar. 
1979), 147-166. 

4. ACM/IEEE-CS Joint Curriculum 
Task Force. Computing Curricula 
1991. Feb. 1991. 

5. Computing Sciences Accreditation 
Board. Criteria for Accrediting 
Programs in Computer Science in 
the United States. Jan. 1987. 

6. Denning, P.J., Comer, D.E., Gries, 
D., Mulder, M.C., Tucker, A.B., 
Turner, A.J., and Young, P.R. 
Computing as a discipline. Commun. 
ACM 32, 1 (Jan. 1989), 9-23. 

7. Educational Activities Board. The 
1983 Model Program in Computer 
Science and Engineering. No. 932. 
Dec. 1983. 

8. Gibbs, N.E., and Tucker, A.B. 
Model curriculum for a liberal arts 
degree in computer science. Com- 
mun. ACM 29, 3 (Mar. 1986), 202- 
210. 

9. Koffman, E.P., Miller, P.L., and 
Wardle, C.E. Recommended curric- 
ulum for CS 1, 1984: A report of the 
ACM curriculum task force for 
CS1. Commun. ACM 27, 10 (Oct. 
1984), 998-1001. 

10. Koffman, E.P., Stemple, D., and 
Wardle, C.E. Recommended curric- 
ulum for CS2, 1984: A report of the 
ACM curriculum task force for 
CS2. Commun. ACM 28, 8 (Aug. 
1985), 815-818. 

11. Mulder, M.C., and Dalphin, J. 
Computer science program re- 
quirements and accreditation--an 
interim report of the ACM/IEEE 
computer society joint task force. 
Commun. ACM 27, 4 (Apr. 1984), 
330-335. 

Permission to copy without fee all or part of 
this material is granted provided that the 
copies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
date appear, and notice is given that copying 
is by permission of the Association for 
Computing Machinery. To copy otherwise, or 
to republish, requires a fee and/or specific 
permission. 

©ACM0002-0782/91/0500-068 $1.50 

8 4  June 1991/Vol.34, No,6/COMMUNfCATIONS OF THE ACM 


