
A Summary of the ACM/IEEE-CS Joint Curriculum Task Force Report

COMPUTING CURRICULA
1991

INTRODUCTION: ACM first published recommendations for undergraduate programs in computer

science in 1968 in a report called "Curriculum '68: ' The report was produced as an activity of the ACM

Education Board, which since then has been providing updates to recommendations for computer science

programs as well as recommendations for other academic programs in computing.

In 1984 it was recognized by Education Board Chair Robert Aiken that there was a need for a fresh look

at undergraduate computer science curricula. The discipline had matured considerably during the previous

decade, but there had been enough changes in both subject matter and pedagogy to create a need to up-

date the recommendations that had been published in 1979. One problem was that while many programs

had sprung up in response to local demanci, the implementors did not have a good feel for the discipline

and the programs were too narrow, often lacking depth as well as breadth. It was decided that a good

starting point for reconsideration of degree programs in computer science would be to establish a working

definition of the discipline.

At about the same time, informal discussions took place between members of the Education Board and

members of the IEEE Computer Society regarding the possibility of joint work in the curriculum area. Both

societies had published curriculum recommendations independently, but it was recognized that there was

a great deal of overlap in interests and considerable commonality between the recommendations of the two

groups. Furthermore, joint recommendations from the two societies were likely to have a much greater

impact than recommendations from only one of the two.

Consequently, a task force of distinguished computer scientists was formed in 1985 by ACM, in co-

operation with the Computer Society, to establish a definition of the discipline and to make recommendations

for an introductory course sequence that would provide a foundation for curricula in the discipline. The task

force, chaired by Peter Denning published its report in December 1988. It was decided to complete the

task of developing recommendations for the entire undergraduate curriculum by forming another task force

jointly with the Computer Society; this was done in February, 1 ?88.

The Joint ACM/IEEE-CS Curriculum Task Force published its report in March, 1971. A summary of the

report is provided in the following article, and the entire report can be ordered through the ACM Order

Department (Order Number 201 ?10). The report represents the efforts of the task force to present current

COMMUNICATIONS OF THE ACM/June]991/Vo1.34, No.6 6 g

ming an,] design in a different
light. Overall, it attempts to inte-
grate theory, abstraction, design,
and the social context of computing
into the curriculum in more com-
pelling ways.

In summary, the report is influ-
enced by its predecessors, yet it is
quite different in scope and objec-
tives from any one of them. It re-
flects the rapid and dramatic evolu-
tion of the discipline of computing
and its pedagogy that has taken
place during the last several years.
It is holistic, attempting to reach a
wider constituency than any of its
predecessors. It is intentionally de-
signed to encourage curriculum
innovation and evolution, enabling
educators to respond in a timely
fashion to future changes in the
discipline rather than to simply
update earlier models.

Undergraduate Program
Goals/Graduate PrOfiles
Undergraduate programs in com-
puting share common attributes,
values, and curricula, and so do
their graduates. The following dis-
cussion reflects the Task Force's
view of these shared attributes and
values that serve as a basis for the
curriculum recommendations that
follow.

Undergraduate programs
should prepare graduates to un-
derstand the field of computing,
both as an academic discipline and
as a profession within the context of
a larger society. Thus, graduates
should be aware of the history of
computing, including those major
developments and t rends--
economic, scientific, legal, political,
and cultural--that have combined
to shape the discipline during its
relatively short life.

The first goal for undergraduate
programs, therefore, is to provide a
coherent and broad-based coverage
of the discipline of computing.
Graduates should develop a rea-
sonable level of understanding in
each of the subject areas and pro-
cesses that define the discipline, as

well as an appreciation for the in-
terrelationships that exist among
them.

A second goal for undergraduate
programs in computing is to func-
tion effectively within the wider in-
tellectual framework that exists
within the institutions that house
the programs. These institutions
vary widely in their respective mis-
sions. Some of them emphasize
breadth of study over depth, while
others emphasize the opposite.
Some are rigid in the overall bal-
ance between requirements and
electives, while others are more
flexible.

Third, different undergraduate
programs place different levels of
emphasis upon the objectives of
preparing students for entry into
the computing profession, prepar-
ing students for graduate study in
the discipline of computing, and
preparing students for the more
general challenges of professional
and personal life.

Fourth, undergraduate pro-
grams should provide an environ-
ment in which students are exposed
to the ethical and societal issues that
are associated with the computing
field. This includes maintaining
currency with recent technological
and theoretical developments, up-
holding general professional stan-
dards, and developing an aware-
ness of one's own strengths and
limitations, as well as those of the
discipline itself.

Fifth, undergraduate programs
should prepare students to apply
their knowledge to specific, con-
strained problems and produce so-
lutions. This includes the ability to
define a problem clearly; to deter-
mine its tractability; to study, spec-
ify, design, implement, test, mod-
ify, and document that problem's
solution; and to work within a team
environment throughout the entire
problem-solving process.

Finally, undergraduate pro-
grams should provide sufficient
exposure to the rich body of theory
that underlies the field of comput-

ing, so that students appreciate the
intellectual depth and abstract is-
sues that will continue to challenge
researchers in the future.

Underlying Principles
for Curriculum Design
As noted earlier, the report Comput-
ing as a Discipline presented a com-
prehensive and contemporary defi-
nition of the discipline of
computing. This definition pro-
vides a conceptual basis for defin-
ing a new teaching paradigm, as
well as undergraduate curriculum
design guidance for the discipline.
The definition includes a specifica-
tion of the subject matter by identi-
fying nine constituent subject areas
and three processes that character-
ize different working methodolo-
gies used in computing research
and development. That specifica-
tion is used in significant ways in
this article.

From the subject matter of the
nine areas of the discipline, this ar-
ticle identifies a body of fundamen-
tal material called the common re-
quirements, to be included in every
program. The curriculum of each
program must also contain substan-
tial emphasis on each of the three
processes, which are called theory,
abstraction, and design. In addition,
this article identifies a body of sub-
ject matter representing the social
and professional context of the dis-
cipline, also considered to be essen-
tial for every program. Finally, a set
of concepts that recur throughout
the discipline, and that represent
important notions and principles
that remain constant as the subject
matter of the discipline changes,
are an important component of
every program.

The Nine Subject Areas
Nine subject areas are identified in
Computing as a Discipline as compris-
ing the subject matter of the disci-
pline. Each of these areas has a sig-
nificant theoretical base, significant
abstractions, and significant design
and implementation achievements.
While these subject area definitions

f
,J

7 ~ June 1991/Vol,34, No.6/C:OMMUNIGATIONS OF THE AC:M

cover the entire discipline, they
each contain certain fundamental
subjects that should be required in
all undergraduate programs in
computing; this fundamental sub-
ject matter is identified later as the
common requirements for all pro-
grams. On the other hand, certain
parts of these subject areas are less
central and are therefore not in-
cluded in the common require-
ments. These topics are left for the
advanced components of the un-
dergraduate or graduate curricu-
lum.

Thus, in some cases, major com-
ponents of a subject area that ap-
pear in its title are not included in
the common requirements. For
example, the common require-
ments do not contain subject matter
on symbolic computation. How-
ever, the subject area title "Numeri-
cal and Symbolic Computation"
from Computing as a Discipline is re-
tained, both in the interest of conti-
nuity and because additional sub-
ject matter will appear in the
advanced components of comput-
ing curricula. For instance, sym-
bolic computation appears among
the advanced and supplemental
topics that are described in an up-
coming section, even though it does
not appear among the common
requirements.

The nine subject areas are:
* Algorithms and Data Structures
• Architecture
• Artificial Intelligence and Robot-

ics
Database and Information Re-

trieval
• Human-Computer Communica-

tion
e Numerical and Symbolic Compu-

tation
o Operating Systems
* Programming Languages
* Software Methodology and Engi-

neering
More detailed discussion of these
areas can be found in the report
Computing as a Discipline, as well as
the full report Computing Curricula
1991 itself.

The Three Processes:
Theory, Abstraction, and Design
Because computing is simultane-
ously a mathematical, scientific, and
engineering discipline, different
practitioners in each of the nine
subject areas employ different
working methodologies, or pro-
cesses, during the course of their
research, development, and appli-
cations work.

One such process, called theory, is
akin to that found in mathematics,
and is used in the development of
coherent mathematical theories. An
undergraduate 's first encounter
with theory in the discipline often
occurs in an introductory mathe-
matics course. Further theoretical
material emerges in the study of
algorithms (complexity theory),
architecture (logic), and program-
ming languages (formal grammars
and automata). The present curric-
ulum recommendations contain a
significant amount of theory that
should be mastered by undergrad-
uates in all programs.

The second process, called ab-
straction, is rooted in the experi-
mental sciences. Undergraduate
programs in computing introduce
students to the process of abstrac-
tion in a variety of ways, both in
classes and in laboratories. For ex-
ample, the basic von Neumann
model of a computer is a funda-
mental abstraction whose proper-
ties can be analyzed and compared
with other competing models. Stu-
dents are introduced to this model
early in their undergraduate
coursework. Undergraduate labo-
ratory experiments that emphasize
abstraction stress analysis and in-
quiry into the limits of computa-
tion, the properties of new compu-
tational models, and the validity of
unproven theoretical conjectures.

The third process, called design,
is rooted in engineering and is used
in the development of a system or
device to solve a given problem.
Undergraduates learn about design
both by direct experience and by
studying the designs of others.

Many laboratory projects are de-
sign-oriented, giving students first-
hand experience with developing a
system or a component of a system
to solve a particular problem.
These laboratory projects empha-
size the synthesis of practical solu-
tions to problems and thus require
students to evaluate alternatives,
costs, and performance in the con-
text of real-world constraints. Stu-
dents develop the ability to make
these evaluations by seeing and dis-
cussing example designs as well as
receiving feedback on their own
designs.

In all nine subject areas of com-
puting, these three processes of
theory, abstraction, and design
appear prominently and indispen-
sably. A thorough grounding in
each process is thus fundamental to
all undergraduate programs in the
discipline.

Social and Professional Context
Undergraduates also need to un-
derstand the basic cultural, social,
legal and ethical issues inherent in
the discipline of computing. They
should understand where the disci-
pline has been, where it is, and
where it is heading. They should
also understand their individual
roles in this process, as well as ap-
preciate the philosophical ques-
tions, technical problems, and aes-
thetic values that play an important
part in the development of the dis-
cipline.

Students also need to develop the
ability to ask serious questions
about the social impact of comput-
ing and to evaluate proposed an-
swers to those questions. Future
practitioners must be able to antici-
pate the impact of introducing a
given product into a given environ-
ment. Will that product enhance or
degrade the quality of life? What
will the impact be upon individuals,
groups, and institutions?

Finally, students need to be
aware of the basic legal rights of
software and hardware vendors
and users, and they also need to

COMMUNICATIONS OF THE ACM/June 1991/VoL34, No.6 7 3

appreciate the ethical values that
are the basis for those rights. Fu-
ture practitioners must understand
the responsibility they will bear,
and the possible consequences of
failure. They must understand
their own limitations as well as the
limitations o f their tools. All practi-
tioners must make a long-term
commitment to remaining current
in their chosen specialties and in
the discipline of computing as a
whole.

To provide this level of aware-
ness, undergraduate programs
should devote explicit curricular
time to the study of social and pro-
fessional issues. The subject matter
recommended for this study ap-
pears in the knowledge units under
the heading SP: Social, Ethical, and
Professional Issues.

Recurring Concepts
The discussion thus far has empha-
sized the division o f computing into
nine subject areas, three processes,
and its social and professional con-
text. However, certain fundamental
concepts recur throughout the dis-
cipline and play an important role
in the design of individual courses
and whole curricula. Computing as a
Discipline refers to some of these
concepts as affinity groups or basic
concerns throughout the discipline, x
The Task Force refers to these fun-
damental concepts as recurring con-
cepts in tlhis article.

Recurring concepts are signifi-
cant ideas, concerns, principles and
processes that help to unify an aca-
demic discipline. An appreciation
for the pervasiveness o f these con-
cepts and an ability to apply them in
appropriate contexts is one indica-
tor o f a graduate's maturity as a
computer scientist or engineer.
Clearly, in designing a particular
curriculum, these recurring con-
cepts must be communicated in an
effective manner; it is important to
note that the appropriate use of the
recurring concepts is an essential

IPage 9 of [6].

element in the implementation of
curricula and courses based upon
the specifications given in this arti-
cle. Additionally, these concepts
can be used as underlying themes
that help tie together curricular
materials into cohesive courses.

Each recurring concept listed in
this article

• Occurs throughout the discipline,
• Has a variety of instantiations,
• Has a high degree o f technologi-

cal independence.

Thus, a recurring concept is any
concept that pervades the discipline
and is independent of any particu-
lar technology. A recurring concept
is more fundamental than any of its
instantiations. A recurring concept
has established itself as fundamen-
tal and persistent over the history
of computing and is likely to re-
main so for the foreseeable future.

In addition to the three charac-
teristics given above, most recur-
ring concepts

• Have instantiations at the levels
of theory, abstraction and design,

• Have instantiations in each of the
nine subject areas,

• Occur generally in mathematics,
science and engineering.

These additional points make a
strong assertion concerning the
pervasiveness and persistence of
most of the recurring concepts. Not
only do they recur throughout the
discipline, they do so across the
nine subject areas and across the
levels of theory, abstraction and
design. Furthermore, most are in-
stances of even more general con-
cepts that pervade mathematics,
science and engineering.

The following is a list of 12 re-
curring concepts that are identified
as fundamental to computing. Each
concept is followed by a brief de-
scription.

Binding: the processes of making
an abstraction more concrete by
associating additional properties
with it. Examples include associat-

ing (assigning) a process with a pro-
cessor, associating a type with a
variable name, associating a library
object program with a symbolic ref-
erence to a subprogram, instantia-
tion in logic programming, associ-
ating a method with a message in an
object-oriented language, creating
concrete instances from abstract
descriptions.

Complexity of large problems: the
effects of the nonlinear increase in
complexity as the size of a problem
grows. This is an important factor
in distinguishing and selecting
methods that scale to different data
sizes, problem spaces, and program
sizes. In large programming proj-
ects, it is a factor in determining the
organization o f an implementation
team.

Conceptual and formal models:
various ways of formalizing, char-
acterizing, visualizing and thinking
about an idea or problem. Exam-
ples include formal models in logic,
switching theory and the theory of
computation, programming lan-
guage paradigms based upon for-
mal models, conceptual models
such as abstract data types and se-
mantic data models, and visual lan-
guages used in specifying and de-
signing systems, such as data flow
and entity-relationship diagrams.

Consistency and completeness:
concrete realizations o f the con-
cepts of consistency and complete-
ness in computing, including re-
lated concepts such as correctness,
robustness, and reliability. Consis-
tency includes the consistency of a
set of axioms that serve as a formal
specification, the consistency of
theory to observed fact, and inter-
nal consistency of a language or in-
terface design. Correctness can be
viewed as the consistency of compo-
nent or system behavior to stated
specifications. Completeness in-
cludes the adequacy of a given set
of axioms to capture all desired
behaviors, the functional adequacy

74 June 1991/%1.34, No.6/COMMUNICATIONS OF THE ACM

of software and hardware systems,
and the ability of a system to behave
well under error conditions and
unanticipated situations.

Efficiency: measures of cost rela-
tive to resources such as space,
time, money, and people. Examples
include the theoretical assessment
of the space and time complexity of
an algorithm, the efficiency with
which a certain desirable result
(such as the completion of a project
or the manufacture of a compo-
nent) can be achieved, and the effi-
ciency of a given implementation
relative to alternative implementa-
tions.

Evolution: the fact of change and
its implications. This involves the
impact of change at all levels and
the resiliency and adequacy of ab-
stractions, techniques and systems
in the face of change. Examples
include the ability of formal models
to represent aspects of systems that
vary with time, and the ability of a
design to withstand changing envi-
ronmental demands and changing
requirements, tools and facilities
for configuration management.

Levels of abstraction: the nature
and use of abstraction in comput-
ing; the use of abstraction in man-
aging complexity, structuring sys-
tems, hiding details, and capturing
recurring patterns; the ability to
represent an entity or system by
abstractions having different levels
of detail and specificity. Examples
include levels of hardware descrip-
tion, levels of specificity within an
object hierarchy, the notion of ge-
nerics in programming languages,
and the levels of detail provided in
a problem solution from specifica-
tions through code.

Ordering in space: the concepts of
locality and proximity in the disci-
pline o f computing. In addition to
physical location, as in networks or
memory, this includes organiza-
tional location (e.g., of processors,

processes, type definitions, and as-
sociated operations) and conceptual
location (e.g., software scoping,
coupling, and cohesion).

Ordering in time: the concept of
time in the ordering of events. This
includes time as a parameter in for-
mal models (e.g., in temporal logic),
time as a means of synchronizing
processes that are spread out over
space, time as an essential element
in the execution of algorithms.

Reuse: the ability of a particular
technique, concept or system com-
ponent to be reused in a new con-
text or situation. Examples include
portability, the reuse of software
libraries and hardware compo-
nents, technologies that promote
reuse of software components, and
language abstractions that promote
the development of reusable soft-
ware modules.

Security: the ability o f software and
hardware systems to respond ap-
propriately to and defend them-
selves against inappropriate and
unanticipated requests; the ability
of a computer installation to with-
stand catastrophic events (e.g., nat-
ural disasters and attempts at sabo-
tage). Examples include type-
checking and other concepts in
programming languages that pro-
vide protection against misuse of
data objects and functions, data
encryption, granting and revoking
of privileges by a database manage-
ment system, features in user inter-
faces that minimize user errors,
physical security measures at com-
puter facilities, and security mecha-
nisms at various levels in a system.

Trade-offs and consequences: the
phenomenon of trade-offs in com-
puting and the consequences of
such trade-offs; and the technical,
economic, cultural and other ef-
fects of selecting one design alter-
native over another. Trade-offs are
a fundamental fact of life at all lev-
els and in all subject areas. Exam-

pies include space-time trade-offs
in the study of algorithms, trade-
offs inherent in conflicting design
objectives (e.g., ease of use versus
completeness, flexibility versus sim-
plicity, low cost versus high reliabil-
ity and so forth), design trade-offs
in hardware, and trade-offs implied
in attempts to optimize computing
power in the face of a variety of
constraints.

In constructing curricula from
the overall specifications o f the
Task Force, curriculum designers
must be aware of the fundamental
role played by recurring concepts.
That is, a recurring concept (or a
set of recurring concepts) can help
to unify the design of a course, a
lecture, or a laboratory exercise.
From the instructor's perspective
(and also from the student's per-
spective), a course is rarely satisfy-
ing unless there is some "big idea"
that seems to hold disparate ele-
ments together. We see the use of
recurring concepts as one method
for unifying the material this way.

At the level of the entire curricu-
lum, the recurring concepts also
play a unifying role. They can be
used as threads that tie and bind
different courses together. For ex-
ample, in introducing the concept
of co~istency as applied to language
design in a programming language
course, the instructor might ask
students to consider other contexts
in which consistency played an im-
portant role, such as in a previous
software design or computer orga-
nization course. By pointing out
and discussing the recurring con-
cepts as they arise, instructors can
help portray computing as a coher-
ent discipline rather than as a col-
lection o f unrelated topics.

From Principles to Curriculum
An undergraduate curriculum in
computing should provide each
graduate with a reasonable level of
instruction in all of the subject areas
identified above. This allows each
graduate to achieve a breadth of

COMMUNICATIONS OF THE ACM/June 1991/Vo1.34, No.6 7 S

J
understanding across the entire
discipline rather than just in a few
of its parts. Breadth is ensured in
the present guidelines by way of the
common requirements.

The undergraduate curriculum
should also provide reasonable
depth of study in some of the nine
subject areas o f the common re-
quirements. While the particular
way in which subject area depth is
achieved will vary among different
types o f programs, it is essential
that depth of study be achieved in
one way or another. Depth is en-
sured in the present guidelines by
way of tile advanced~supplemental top-
ics (see following discussion).

Among the three processes--
theory, abstraction, and design-- i t
is fair to assume that some under-
graduate programs emphasize
more theory than design, while oth-
ers emphasize more design than
theory. However, the process of
abstraction will normally be promi-
nent in all undergraduate curric-
ula. Theory, abstraction, and de-
sign are included throughout the
common requirements, and are re-
inforced by the integration of labo-
ratory work with subject matter in a
principled and thorough way.

To support the development of
maturity in the mathematical and
scientific aspects of computing, an
undergraduate curriculum should
also include certain mathematics
and science subject matter to com-
plement the subject matter in the
discipline itself. Similarly, to sup-
port the development of maturity
in the scientific and engineering
aspects of the discipline, the pres-
ent guidelines recommend that stu-
dents regularly engage in labora-
tory work and other educational
experiences.

An overview of a complete un-
dergraduate program in comput-
ing can be summarized as shown in
Figure 1. This summary provides a
general level of guidance for imple-
menting undergraduate programs
in the discipline. There, the need to
recognize different institutional

PRINCIPLES:

u I G U R E 1

A Complete Curriculum and Its Underlying Principles

contexts and programmatic goals is
accommodated by the box in that
figure labeled Other Degree Require-
ments.

Assuring Breadth and Depth
To realize the breadth require-
ments, undergraduate programs
should provide a broad selection o f
topics taken from all nine subject
areas of computing. However, be-
cause different institutions will
want to fulfill these common re-
quirements in different ways, they
are not presented as a single pre-
scribed set of courses. Instead, the
common requirements' topics are
presented as a collection of knowl-
edge units. These can be combined
in various ways to form different
sets of courses, or implementations, in
different undergraduate settings.
Further discussion of constructing
courses out of knowledge units
appears later, and many examples
are given in the full report itself.

To realize the depth require-
ments, different institutions will
offer additional requirements and
electives in accordance with their

overall educational missions, fac-
ulty size, and subject area expertise.
The full report describes a number
of advanced and supplemental top-
ics that provide depth of study in
the nine areas of the discipline of
computing.

The ROle of Programming
The term programming is under-
stood to denote the entire collection
of activities that surround the de-
scription, development, and effec-
tive implementation o f algorithmic
solutions to well-specified prob-
lems. While this definition is not to
be construed to mean simply "cod-
ing in a particular programming
language or for a particular ma-
chine architecture," it does neces-
sarily include the mastery of highly
stylized skills in a particular pro-
gramming language or languages.
Thus, fluency in a programming
language is an essential attribute of
the mastery o f programming. On
the other hand, programming is
not to be construed so broadly as to
subsume all of the activities in-
volved in software methodology

1 6 June 1991/Vol.34, No.6/COMMUNICATIONS OF 3"HE ACM

and engineering. The latter is a
much broader notion and includes,
for example, the development of
specifications and the maintenance
of software.

Programming occurs in all nine
subject areas in the discipline of
computing. It is part of the design
process, it is used to implement the
models that occur in the abstraction
process, and sometimes it even oc-
curs in the process of proving a the-
oretical result. Thus, the role of
programming in the undergradu-
ate curriculum is also multidimen-
sional; students develop programs
during the design of software, they
exercise and modify programs dur-
ing other laboratory experiments,
and they read programs in the nor-
mal course of studying subject mat-
ter in textbooks and the published
literature. In this latter sense, pro-
gramming is an extension of the
basic skills that students and profes-
sionals normally use in day-to-day
communication.

Mastery of programming can be
accomplished in several ways dur-
ing an undergraduate 's career.
First, a substantial portion of the
common requirements' laboratory
work contains programming as an
essential part. For example, the
knowledge unit SEI : Fundamental
Problem Solving Concepts requires
laboratory work in which students
design, implement, and exercise
programs in a modern program-
ming language. Second, under-
graduate texts in the various subject
areas teach and use conventional
programming techniques through-
out their presentations of subject
matter. Lectures in courses
throughout the curriculum also use
well-established styles of program-
ming to explain or clarify algorith-
mic concepts. Third, the computing
literature is replete with programs
and examples of programming
methodology, and undergraduates
become familiar with this literature
during their studies. Instructors
should take care to present exam-
ples of good programming style for

students to study and emulate.
Thus, undergraduates should

develop an early understanding of
programming. They should con-
tinue to actively engage in the mas-
tery and use of programming para-
digms and languages throughout
their coursework, homework, and
laboratory exercises.

It should be noted here that the
common requirements do not as-
sume that students will have any
experience with programming be-
fore taking their first course in the
discipline. However, increasing
numbers of students do gain such
experience in secondary school.
Many feel the amount of attention
traditionally paid to the syntax of a
programming language in the first
course is excessive, and ought to be
replaced with a more balanced in-
troduction to the discipline.

For these reasons, PR: Introduc-
tion to a Programming Language is
defined as a separate knowledge
unit, but is not a required part of the
common requirements. That is,
most programs will be able to intro-
duce a programming language in
conjunction with other knowledge
unit material, especially the one
named SE1, during the scheduled
laboratory periods that accompany
the first course. For those programs
that do require a more careful
treatment of this topic, the optional
knowledge unit PR: Introduction to a
Programming Language can be
added to the common require-
ments to fulfill this need.

The Role of Laboratories
The report Computing as a Discipline
makes a clear statement about the
purpose and structure of labora-
tory work in the undergraduate
curriculum; this article expands
upon that statement by identifying
in more detail how these very im-
portant laboratory activities can be
integrated into an undergraduate
curriculum. An undergraduate
curriculum in computing is ideally
comprised of an integrated pro-
gram of lectures and laboratory

experiences. The learning process
occurs as a result of interaction
among students, instructors, and
the subject matter.

Laboratories demonstrate the
application of principles to the de-
sign, implementation, and testing
of software and hardware systems.
Laboratories also emphasize tech-
niques that utilize contemporary
tools and lead to good experimental
methods, including the use of mea-
suring instruments, diagnostic aids,
software and hardware monitors,
statistical analysis of results, and
oral and written presentation of
findings. The laboratories should
augment the instruction that takes
place in the lectures by having
clearly stated objectives that com-
plement the lectures.

The laboratory exercises in-
cluded in the Suggested Laboratories
part of each knowledge unit pro-
vide a diverse set of learning expe-
riences. Some involve the execution
of hardware, software, or simula-
tors to observe some phenomenon,
either by data collection or by visu-
alization. Others are designed to
increase student expertise in soft-
ware methodology through the
development of alternative design
and implementation techniques.
Still others are similar to science
experiments because they involve
hypothesis formation and testing.
These types of laboratory experi-
ences combine to increase student
problem-solving ability, analytical
skill, and professional judgment.

In the presentation of laborato-
ries among the knowledge units,
two distinct types of laboratory
work are offered. These are called
open laboratories and closed labora-
tories. An open laboratory is an
unsupervised assignment that may
involve the use of a computer, soft-
ware, or hardware for its comple-
tion. Students can complete an
open laboratory at their own con-
venience as it does not require di-
rect supervision. Conventional pro-
gramming assignments are often
done in an open laboratory setting.

COMMUNICATIONSOFTHEACM/Jun¢ 1991/%1.34, No.6 7 7

A closed laboratory is a sched-
uled, structured, and supervised
assignment that involves the use of
computing hardware, software, or
instrumentation for its completion.
Students complete a closed lab by
attending a scheduled session, usu-
ally 2 -3 hours long, at a specific
facility. Supervision is provided by
the instructor or a qualified assis-
tant who is familiar with the details
of the assignment. The specialized
equipment, software, and supervi-
sion offered by closed laboratories
makes them more desirable than
open laboratories in certain situa-
tions. Closed laboratories are par-
ticularly important in situations
where the assignment relies on in-
structor-student interaction or a
team effort among students to com-
plete the work. For example, the
use of software tools that facilitate
the production o f large-scale soft-
ware, CAD programs, or other
packages o f considerable complex-
ity norrrmlly require the initial
guidance and advice of an expert.

Whether the lab is open or
closed, the facility should be staffed
by a knowledgable person during
all scheduled laboratory hours.
Staffing ,ensures immediate feed-
back and. guidance during times
when students are working inde-
pendently on laboratory assign-
ments.

The designation open or closed,
along with the laboratories them-
selves, should be used as sugges-
tions, or statements o f preference
by the Task Force, rather than pre-
scriptions for all programs to fol-
low. That is, some laboratories that
are designated as closed may be
done as open laboratories and vice
versa. This choice may depend on
how the particular lab experience
and objectives fit into the curricu-
lum as well as the available facilities
in a particular institutional setting.

Whether open or closed, a labo-
ratory assignment should always be
carefully]planned by the instructor.
Descriptions that include clear
statements of purpose, methodol-

ogy, and results should be carefully
prepared for the students. Labora-
tory assignments should be realis-
tically designed, so that an average
student can complete the work in
the allotted time. It is particularly
~mportant to make sure that ade-
quate facilities are available to sup-
port the goals of each laboratory
assignment.

Completion of a laboratory as-
signment should be accompanied
by a written or oral report by the
student. Written reports should
reflect a disciplined and mature
writing style, in addition to the suc-
cessful completion o f the laboratory
work itself. It is expected that there
will be homework in addition to
laboratory assignments, and this
work should also be well-integrated
with the subject matter of the lec-
tures.

Other Educational Experiences
Beyond the subject matter of the
curriculum, undergraduates in
computing should have additional
experiences that will help them
develop the capacity for critical
thinking, problem solving, research
methods, and professional develop-
ment. These experiences can be
incorporated into the classroom
lectures, laboratories, and extracur-
ricular activities of the undergradu-
ate program. These additional ex-
periences generally fall into three
categories:

1. working as part of a team
2. written and oral communication
3. familiarization with the profes-

sion

For further discussion of these re-
quirements, readers are encour-
aged to consult the full report.

The Common Requirements
The common requirements form
the basis for a curriculum in com-
puting by providing a platform of
knowledge that is considered essen-
tial for all students who concentrate
in the discipline. These are not the
only topics that should be covered,

yet they contain the basic body of
knowledge that should be part of
every curriculum. The common
requirements are expressed here as
knowledge units rather than com-
plete courses, to allow different
programs to package the subject
matter in different ways. Such vari-
ations will occur because different
institutions and types of programs
will have different pedagogical pri-
orities, educational goals, and gen-
eral constraints within which they
implement the common require-
ments.

While every knowledge unit is
considered to be essential, the
depth and breadth o f coverage for
each topic therein will not be the
same. For example, the knowledge
unit AL6: Sorting and Searching rec-
ommends that various sorting and
searching algorithms be covered in
six lecture hours and associated lab-
oratory work. However, this is only
about two weeks' time. Thus, only a
few of the multitude of sorting
techniques can be covered in any
appreciable dep th - -pe rhaps inser-
tion sort, heap sort, and quicksort--
while various other sorting tech-
niques can be covered in a more
surveylike fashion. Instructors will
inevitably make tradeoffs between
depth and breadth o f coverage,
given the constraints of the number
o f lectures in a knowledge unit, in
the same way they do now with cur-
rent textbooks. Furthermore, some
knowledge units offer only a broad
level of coverage o f a topic (see, for
instance, the knowledge units des-
ignated as PL1, OS1, or AI1). Addi-
tional depth in these subjects can be
obtained only by exceeding the cov-
erage recommended by the com-
mon requirements, either in the
coverage of the knowledge unit, or
in an advanced course.

Organizing the Common
Requirements: The Knowledge
Unit
In the following discussion, a knowl-
edge unit is understood to designate

78 June 1991/Vol.34, No.6/COMMUNICATIONS OF THE ACM

a coherent collection of subject
matter that is so fundamental
within one of the nine subject areas
of the discipline listed earlier, or
within the area of social, ethical,
and professional issues (SP), that it
should occur in every undergradu-
ate curriculum. While the subject
matter of a knowledge unit is often
related to other knowledge units in
the common requirements by way
of a prerequisite structure, it can
nevertheless be introduced within
any of several alternative course
structures.

For easy cross-referencing
among the knowledge units, Table
I gives the two-letter tags used to
identify each of the nine subject
areas, the additional area of social
and professional context (SP), and
the optional introduction to a pro-
gramming language (PR).

The collected knowledge units
are organized by subject area. Each
knowledge unit within a subject
area is identified by the tag for that
subject area. For example, the
knowledge units in the area of Al-
gorithms and Data Structures are
identified by the tags ALl, AL2,
AL3, and so forth.

The following sample knowledge
unit illustrates the presentation
style for knowledge units:

ALG: Sorting and Searching
Comparison of various algorithms
for sorting and searching, with

focus on complexity and space ver-
sus time trade-offs.

Recurring Concepts: complexity of
large problems, consistency and
completeness, efficiency, trade-offs
and consequences.

Lecture Topics: (six hours minimum)
1. O(n 2) sorting algorithms (e.g.,

insertion and selection sort);
space-time complexity: best,
worst cases

2. O(n log n) sorting algorithms
(e.g., quicksort, heapsort, merge-
sort); space-time complexity:
best, worst cases

3. Other sorting algorithms (e.g.,
Shell sort, bucket sort, radix
sort)

4. Comparisons of algorithms
5. Serial search, binary search and

binary search tree; space-time
complexity: best, worst cases

6. Hashing, collision resolution

Suggested Laboratories: (closed) Cor-
roboration of theoretical complex-
ity of selected sorting and searching
algorithms by experimental meth-
ods, identifying differences among
best, average, and worst case behav-
iors.

Connections:
Related to: AL5, AL8
Prerequisites: AL4
Requisite for: AI2, OS7, PL9

Architecture AR

Database and Information Retrieval DB

Programming Languages PL

Software Methodology and Engineering SE

Table 2 offers a complete list of the
titles of the knowledge units that
comprise the common require-
ments. While these titles suggest
something about the knowledge
units' contents, a detailed presenta-
tion of each one is given in the full
report [4].

The Advanced and
Supplemental Curriculum
A complete curriculum will include
not only the common require-
ments, but also certain additional
material. This advanced and sup-
plemental material gives each indi-
vidual student an opportunity to
study the subject areas of the disci-
pline in depth. The curriculum
should provide depth of study in
several of the nine subject areas
beyond that provided by the com-
mon requirements. Students nor-
mally achieve that depth by com-
pleting several additional courses in
this part of the curriculum. The
number of such courses will vary in
accordance with institutional
norms. The sample implementa-
tions in the appendix of the full
report illustrate these kinds of vari-
ations.

The topics in the following list
should be considered as areas
where courses may be developed to
provide in-depth study in advanced
undergraduate and graduate
courses. Other topics beyond these
are important as well, but will vary
with the particular interests and
expertise of the faculty in individ-
ual programs. However, these top-
ics tend to be so significant to the
discipline at this time that several of
them ought to appear among the
advanced courses offered by any
undergraduate program.

Advanced Operating Systems
* Advanced Software Engineer-

ing
Analysis of Algorithms

* Artificial Intelligence
Combinatorial and Graph Al-
gorithms
Computational Complexity

COMMUNICATIONS OF THE ACM/June 1991/Vol.34, No.6 79

Summary of the Common Requirements

8 0 June 1991/Vo1.34, No16/COMMUNICATION$ OF THE ACM

* Computer Networks
* Computer Graphics

Computer -Human Interface
* Computer Security
* Database and Information Re-

trieval
Digital Design Automation
Fault-Tolerant Computing
Information Theory
Modeling and Simulation
Numerical Computation

* Parallel and Distributed Com-
puting
Performance Prediction and
Analysis
Principles of Computer Archi-
tecture
Principles of Programming
Languages

* Programming Language
Translation
Real-Time Systems
Robotics and Machine Intelli-
gence
Semantics and Verification
Societal Impact of Computing

* Symbolic Computation
* Theory of Computation
* VLSI System Design

Several of the topics in this list are
marked with an asterisk (*). This
denotes that a more complete de-
scription is given in the full report
Computing Curricula 1991. Those
descriptions are intended to give
more concrete information that will
assist in developing courses in these
topic areas.

Mathematics and Science
Requirements
An understanding of mathematics
and science is important for stu-
dents who concentrate their studies
in computing.

Mathematical maturity, as com-
monly attained through logically
rigorous mathematics courses, is
essential to successful mastery of
several fundamental topics in com-
puting. Thus, all computing stu-
dents should take at least one-half
year ~ of mathematics courses.
These courses should cover at least
the following subjects:

Discrete Mathematics: sets, func-
tions, elementary propositional and
predicate logic, Boolean algebra,
elementary graph theory, matrices,
proof techniques (including induc-
tion and contradiction), combina-
torics, probability, and random
numbers
Calculus: differential and integral
calculus, including sequences and
series and an introduction to differ-
ential equations

It should be noted that some of the
discrete mathematics topics should
be treated early in the curriculum,
since they are needed for some of
the basic knowledge units.

The half-year mathematics re-
quirement should also include at
least one of the following subjects:

Probability: discrete and continu-
ous, including combinatorics and
elementary statistics
Linear Algebra: elementary, in-
cluding matrices, vectors, and lin-
ear transformations
Advanced Discrete Mathematics: a
second course covering more ad-
vanced topics in discrete mathemat-
ics
Mathematical Logic: propositional
and functional calculi, complete-
ness, validity, proof, and decision
problems

Many implementations will have
additional mathematics require-
ments beyond this minimum set.
For example, professionally ori-
ented programs will normally re-
quire five or six mathematics
courses. Students who wish to pur-
sue graduate study in computing
are often well-advised to take more
mathematics.

Science is important in comput-
ing curricula for three reasons.
First, as well-educated scientists and
engineers, graduates of computing
programs should be able to appre-
ciate advances in science because

2We mean the equivalent o f one-hal f aca-
demic year o f full-time study. Typically, this
would be four or five semester-long courses.

they have an impact on society and
on the field of computing. Second,
exposure to science encourages stu-
dents to develop an ability to apply
the scientific method in problem
solving. Third, many of the appli-
cations students will encounter
after graduation are found in the
sciences.

For these reasons, all computing
curricula should include a compo-
nent that incorporates material
from the physical and life sciences.
Ideally, courses in this component
are those which are designed for
science majors themselves.

Programs intended to prepare
students for entry into the profes-
sion should require a minimum of
one-half year of science. This nor-
mally includes a year-long course in
a laboratory science (preferably
physics) and additional work in the
natural sciences.

Building a Curriculum

Overall Design Considerations
A curriculum for a particular pro-
gram depends on many factors,
such as the purpose of the pro-
gram, the strengths o f the faculty,
the backgrounds and goals of the
students, instructional support re-
sources, infrastructure support
and, where desired, accreditation
criteria. Each curriculum will be
site-specific, shaped by those re-
sponsible for the program who
must consider factors such as insti-
tutional goals, opportunities and
constraints, local resources, and the
prior preparation of students.

Developing a curriculum in-
volves a design process similar to
others with which computer scien-
tists and engineers are familiar. A
successful implementation will
grow from a well-conceived and
well-articulated specification of the
purpose of the curriculum, the con-
text in which the curriculum will be
delivered, and other external op-
portunities and constraints. As with
systems, the success of the imple-
mentation of a curriculum depends

COMMUNICATIONS OF THE ACM/June 1991/Vol.34, No.6 8 1

on the care with which it is de-
signed.

All curr iculum designs, includ-
ing but not limited to comput ing
curricula, should be guided by cer-
tain principles. First, the purpose of
a curr iculum is to educate students.
The curr iculum design therefore
should focus on providing a way for
students to gain the desired knowl-
edge, expert ise and experience by
the time they graduate. The out-
come expected for students should
drive the curr iculum design.

Second, a curr iculum is more
than a set of isolated courses. The re
are unifying ideas and goals that
span the whole curriculum. This
article has included the discussion
of recurr ing concepts as an indica-
tor of those ideas that should be
pervasive in a comput ing curricu-
lum.

Thi rd , there are many ways for
students to learn beyond the stan-
da rd lecture delivery format. Labo-
ratories, in particular, present
many opportuni t ies for innovation.
Faculty members should apply cre-
ative energy to developing alterna-
tive instructional methods.

Fourth, every environment has
constraints that must be consid-
ered. A curr iculum plan must not
be overly optimistic nor overly re-
strictive, but should be realistic,
both for students and for faculty.
For example, a curr iculum plan
that requires a s tudent to take four
comput ing courses dur ing the last
term of the senior year invites a
variety of problems.

Fifth, comput ing is more than
jus t a collection of facts and algo-
rithms. It is a dynamic, vital disci-
pline that offers many challenges
and interest ing problems, exciting
results, and imaginative applica-
tions. The curr iculum should try to
impar t this sense of exci tement to
students; the material may be diffi-
cult, but it need not be dull.

Designing a comput ing curricu-
lum adds another set of special con-
cerns. The rapid change in the dis-
cipline itself demands that a

comput ing curr iculum be dynamic,
not static. It must be built so that it
can evolve along with the subject
matter. All curricula should be
evaluated periodically to see that
they are meet ing their goals; com-
put ing curricula should be evalu-
ated for content to be sure they are
up-to-date. Many depar tments also
face changes that are caused by
changing infrastructure, such as
their organizations, enrollments,
and funding levels.

Another concern in comput ing
curricula comes from the fluid na-
ture o f theory in the discipline. As
comput ing is based on artifacts in
addi t ion to physical laws, many of
its "fundamentals" are subject to
constant re in terpre ta t ion and re-
evaluation. Thus, the theory of
comput ing evolves more rapidly
than does theory in other sciences.

Computing, however, has one
great advantage for curr iculum
designers. I t provides f requent
opportuni t ies for accomplishing
mult iple goals th rough one instruc-
tional experience. Activities can be
leveraged for several purposes. For
example, a discussion of loops or
recursion can simultaneously intro-
duce the concept of searching by
the use of appropr ia te ly chosen
examples.

Designing Courses from
Knowledge Units
The knowledge units enumerated
earlier and described in the full
r epor t specify the scope of topics
that all comput ing students should
study. The lecture hours associated
with each knowledge unit give an
approximate indication of the
depth to which these topics should
be covered; we intend this to repre-
sent the min imum coverage that a
typical p rogram should ensure.
The prerequisi te structure suggests
that some sequencing is required in
the composit ion of courses out of
knowledge units, but the size of the
units allows many organizational
options. Additionally, material in a
knowledge unit may be split and

covered at d i f ferent times and in
di f ferent courses, if deemed appro-
priate.

The knowledge units do not
need to be covered completely in
what would be identif ied as a set of
"core courses," as long as they are
all covered in one requi red course
or another . Fur thermore , some
parts may be covered either in a
s tandard class setting or in a labora-
tory setting. Thus, the knowledge
units of the common requirements
can be combined in various ways to
form courses. In this activity, one
may use the following guidelines:

• Knowledge units should be com-
bined so that the composite sub-
ject mat ter forms a coherent body
of topics for an undergradua te .
In some cases, one or more of the
recurr ing concepts can provide
the "glue," while in o ther cases
one of the nine subject areas can
provide a basis for course organi-
zation.

• The combined set of courses that
comprise an implementat ion
should have a prerequisi te struc-
ture that is consistent with the
prerequisi te s tructure that exists
among their consti tuent knowl-
edge units.

• The combined set of courses that
comprise the implementa t ion
should cover all of the knowledge
units that make up the common
requirements. As specified here,
these total about 271 lecture
hours, which is equivalent to
about seven one-semester
courses. 3 This total does not in-
clude time spent in scheduled
laboratory work, nor does it in-
clude the advanced and supple-
mentary coursework that pro-
vides dep th of study for all
majors.

Implementa t ions may, of course,
exceed this min imum by assigning

3When the optional 12-hour knowledge unit
PR: Introduction to a Programming Language is
incorporated into the curriculum, the total
number of lecture hours increases to about
283.

8 ~ June 1991/Vol.34, No.6/COMMUNICATIONS OF THE A C M

additional depth of coverage or
topic selections beyond those that
are suggested in the common re-
quirements.

The following are two sample
courses, an introductory course
entitled "Problem-solving, Pro-
grams, and Computers" and an-
other course entitled "Data Struc-
tures and Algorithms," that result
from combining selected knowl-
edge units under the foregoing
guidance. The first of these courses
takes knowledge units (KUs) from a
number o f different subject areas,
and has "consistency and complete-
ness" as a recurring concept. The
second of these courses has all of its
knowledge units taken from a sin-
gle subject area.

Problem Solving, Programs, and
Computers
Topic Summary: This course has
three major themes: a rigorous in-
troduction to the process of algo-
rithmic problem solving, an intro-
duction to the organization of the
computers upon which the result-
ing programs run, and an overview
of the social and ethical context in
which the field of computing exists.
Problem-solving rigor is guaran-
teed by a commitment to the pre-
cise specification of problems and a
close association between the
problem-solving process and that
specification. For example, the
identification of a loop is closely
tied to the discovery of its invariant,
which in turn is motivated by the
problem specification itself.

Computer organization is intro-
duced by way of a simple von Neu-
mann machine model and assem-
bler, upon which students can
develop and exercise simple pro-
grams. Elements of the fetch-
execute cycle, runtime data repre-
sentation, and machine language
program structure are thereby re-
vealed.

This course contains 40 lecture
hours of KU topics, and is taught as
a four-credit-hour course. A sched-
uled weekly laboratory is used to

teach programming language syn-
tax and machine organization, as
well as to support student program-
ming exercises.

Prerequisites: An introduction to
logic, as would usually be found at
the beginning of a discrete mathe-
matics course (that can be taken
concurrently)
Knowledge units: AL3 (3/3), AL6 (2/
6), AR3 (2/3), AR4 (7/15), NU1 (1/
3), NU2 (2/4), PL1 (2/2), PL3 (2/2),
PL4 (1/4), SE1 (11/16), SE5 (4/8),
SP1 (3/3) 4

Data Structures and Analysis of
Algorithms
Topic Summary: This course covers
data structures and algorithms in
some depth. Topics covered in-
clude data structures, a more for-
mal treatment of recursion, an in-
troduction to basic problem-solving
strategies, and an introduction to
complexity analysis, complexity
classes, and the theory of comput-
ability and undecidability. Sorting
and searching algorithms are pre-
sented in the light of the presenta-
tion of problem-solving strategies
and complexity issues. Finally, par-
allel and distributed algorithms are
introduced briefly.

This course is taught in three lec-
tures and a two-hour laboratory per
week. It contains 33 lecture hours
devoted to KU topics and their lab-
oratories.
Prerequisites: "Computing II"
Knowledge units: ALl (9/13), AL3
(2/3), AL4 (4/4), AL5 (4/4), AL6 (3/
6), AL7 (3/6), AL8 (6/6), AL9 (2/3)
The full report contains many
more examples of course descrip-
tions that are appropriate in a vari-
ety of institutional settings.

Integrating the Curriculum into a
Course of Study
The computing curriculum will

4In the list of knowledge units that accom-
pany a particular course description, the nota-
tion p/q means that p lecture years are used
out of a total of q hours that are available
from the knowledge unit. Thus, when p = q
the entire knowledge unit is used in that
course,

have to be developed to meet insti-
tutional requirements and should
take advantage of institutional
strengths. Ultimately, the comput-
ing curriculum will be integrated
into a complete four-year course of
study.

Some suggestions for steps to
start building a curriculum are:

• Identify goals of the program,
focusing on student outcomes.

• Identify strengths of the faculty.
• Identify constraints of the local

situation.
• Establish a plan and schedule for

design, implementation, evalua-
tion, modification, and transition.

• Design and implement the cur-
riculum components.

Related Concerns
The report Computing Curricula
1991 addresses the relationship
between its recommendations with
each of the following topics. For
further details, readers are encour-
aged to consult the report itself.

• Faculty and Staff
• Laboratory Resources
• Service Courses and Joint Degree

Programs
• Library Support
• Relationship with Accreditation,

Placement Tests, and Achieve-
ment Tests

Summary
This article summarizes a specifica-
tion for implementing undergrad-
uate programs in computing, as
opposed to a single curriculum.
This approach is required because
of the need to serve a large and di-
verse constituency. The ultimate
success of this approach will there-
fore depend strongly upon the cre-
ative energies of faculty members at
the various institutions that support
undergraduate programs in com-
puting.

This specification acknowledges
the primary importance of the fol-
lowing elements in undergraduate
computing curricula: nine major
subject areas; theory, abstraction

COMMUNICATIONS OF THE ACM/June 1991/Vo1.34, No.6 8 ~

and de,sign; recurring concepts; the
social and professional context;
mathematics and science; language
and communication; and inte-
grated laboratory experience. Suc-
cessful undergraduate programs
that follow from this specification
will pay close attention to each of
these elements in their implemen-
tations

The appendix of the full report
Computing Curricula 1991 contains
the following 12 sample curricula
that are provided as "proofs of con-
cept" for this specification.

• Implementation A: A Program in
Computer Engineering

• Implementation B: A Program in
Computer Engineering
(Breadth-First)

• Implementation C: A Program in
Computer Engineering (Minimal
Number of Credit-Hours)

• Implementation D: A Program in
Computer Science

• Impl~ementation E: A Program in
Computer Science (Breadth-
First)

• Impllementation F: A Program in
Computer Science (Theoretical
Emphasis)

• Imp]lementation G: A Program in
Computer Science (Software
Engineering Emphasis)

• Implementation H: A Liberal
Arts Program in Computer Sci-
ence (Breadth-First)

• Implementation I: A Program in
Computer Science and Engineer-
ing

• Implementation J: A Liberal Arts
Program in Computer Science

• Implementation K: A Liberal
Arts Program in Computer Sci-
ence (Breadth-First)

• Implementation L: A Program in
Computer Science (Theoretical
Emphasis)

Acknowledgments
The Task Force wishes to thank the
following persons who generously
served as reviewers for this work in
its various stages: Narenda Ahuja,
Donald J. Bagert, Jr., James c. Bez-
dek, Nathaniel Borenstein, Richard

j. Botting, Donald Bouldin, Albert
W. Briggs, Jr., j. Glenn Brook-
sheer, Wai-Kai Chen, Lucio
Chiaraviglio, Neal S. Coulter, Steve
Cunningham, Ruth Davis, Peter J.
Denning, Scot Drysdale, Larry A.
Dunning, Peter Durato, J. Philip
East, Adel S. Elmaghraby, John W.
Fendrich, Gary A. Ford, Edwin C.
Foudriat, Donald L. Gaitros, David
Garnick, Judith L. Gersting, Sakti
P. Ghosh, Ratan K. Guha, Stephen
T. Hedetniemi, Thomas T. Hewett,
Jane Hill, Stuart Hirshfield, James
A. Howard, John Impagliazzo,
Greg Jones, Charles Kelemen, Wil-
lis King, Robert L. Kruse, Yedidyah
Langsam, Eugene Lawler, Burt
Leavenworth, R. Rainey Little,
Dennis Martin, Fred J. Maryanski,
Jeffrey J. McConnell, Daniel D.
McCracken, Catherine W. McDon-
ald, John McPherson, David G.
Meyer, Victor Nelson, Chris
Nevison, Robert Noonan, Jeffrey
Parker, Margaret Peterson, Paul
Purdom, Arthur Riehl, David C.
Rine, Rockford J. Ross, Richard
Salter, G. Michael Schneider, Greg
Scragg, Mary Shaw, Daniel P.
Siewiorek, David L. Soldan, Harry
W. Tyrer, Annelieses von Mayr-
hauser, Z.G. Vranesic, Henry
Walker, F. Garnett Walters, John
Werth, Terry Winograd, Charles
W. Winton, Charles T. Wright, Jr.,
and Grace Chi-Dak N. Yeung.

It should be noted that not all of
the reviewers agree with all of the
recommendations in this article or
the full report. However, all com-
ments were carefully considered by
the Task Force throughout this
report's development. Additional
thanks are due to Kathleen A.
Heaphy for proofreading and edi-
torial comments on various drafts
of the report itself. []

References
1. Accreditation Board for Engineer-

ing and Technology, Inc. Criteria
for Accrediting Programs in Engi-
neering in the United States. Dec.
1988.

2. ACM Curriculum Committee on
Computer Science. Curriculum 68:

Recommendations for the under-
graduate program in computer sci-
ence. Commun. ACM 11, 3 (Mar.
1968), 151-197.

3. ACM Curriculum Committee on
Computer Science. Curriculum 78:
Recommendations for the under-
graduate program in computer sci-
ence. Commun. ACM 22, 3 (Mar.
1979), 147-166.

4. ACM/IEEE-CS Joint Curriculum
Task Force. Computing Curricula
1991. Feb. 1991.

5. Computing Sciences Accreditation
Board. Criteria for Accrediting
Programs in Computer Science in
the United States. Jan. 1987.

6. Denning, P.J., Comer, D.E., Gries,
D., Mulder, M.C., Tucker, A.B.,
Turner, A.J., and Young, P.R.
Computing as a discipline. Commun.
ACM 32, 1 (Jan. 1989), 9-23.

7. Educational Activities Board. The
1983 Model Program in Computer
Science and Engineering. No. 932.
Dec. 1983.

8. Gibbs, N.E., and Tucker, A.B.
Model curriculum for a liberal arts
degree in computer science. Com-
mun. ACM 29, 3 (Mar. 1986), 202-
210.

9. Koffman, E.P., Miller, P.L., and
Wardle, C.E. Recommended curric-
ulum for CS 1, 1984: A report of the
ACM curriculum task force for
CS1. Commun. ACM 27, 10 (Oct.
1984), 998-1001.

10. Koffman, E.P., Stemple, D., and
Wardle, C.E. Recommended curric-
ulum for CS2, 1984: A report of the
ACM curriculum task force for
CS2. Commun. ACM 28, 8 (Aug.
1985), 815-818.

11. Mulder, M.C., and Dalphin, J.
Computer science program re-
quirements and accreditation--an
interim report of the ACM/IEEE
computer society joint task force.
Commun. ACM 27, 4 (Apr. 1984),
330-335.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

©ACM0002-0782/91/0500-068 $1.50

8 4 June 1991/Vol.34, No,6/COMMUNfCATIONS OF THE ACM

