
C O V E R F E A T U R E

0018-9162/06/$20.00 © 2006 IEEE26 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

reproducibly for the successful completion of large pro-
jects. But just as important is the view inherent in the sec-
ond part of the definition—identifying specific parts of a
product so that experts can design them and organizations
can mass-produce them free of language and environment
dependencies.

Component-based software engineering has made
tremendous strides toward satisfying both parts of the
definition. The emergence of Web services as a way of
delivering up-to-date functionality over the Internet is
now accepted as the norm, and major software suppliers
seem to be establishing the practice of automatically send-
ing upgrades to any machine using their software. From
a user’s perspective at least, software engineers might have
finally got it right: Software to support all walks of life—
from business to entertainment, education to research—
is ubiquitous, up-to-date, and mostly reliable.

Perhaps most striking is the larger than ever choice of
serious platform options that are increasingly compat-
ible. As the definitions in the “A Platform by Any
Name” sidebar imply, the lines between hardware and
software are blurring—so much so that investment in
new hardware no longer necessarily requires buying and
installing new software.

Unfortunately, the same sense of having arrived is not
true for the developers and users of in-house, customized,
or research-based software. Faced with all these choices,
if anything, their task has become harder. Although
maintenance and upgrading still account for more than

The design of software that is easy to port or deliberately targeted for multiple platforms is

a neglected area of software engineering. A promising solution is to link components and

toolkits through XML and reflection.

Judith Bishop, University of Pretoria

Nigel Horspool, University of Victoria

A s the Greek philosopher Heraclitus purport-
edly said, “The only constant is change.” This
famous saying should be engraved on software
engineering’s temple walls because its follow-
ers know only too well that requirements are

fluid and that functions ebb and flow with the user tide.
The whole point of the practice is to design a system
that will withstand unpredictability.

But the process of handling change requires answer-
ing some hard questions: What happens to the software
when the new hardware arrives? And, even more chal-
lenging, how does a small software house develop for a
variety of platforms, thus maximizing its customer base
and profit? We believe the answer to both these ques-
tions is to build a high degree of platform independence
into the software and thus alleviate the problems of cre-
ating multiple versions and porting to new platforms.

DEFINING THE PROBLEM
This is a software engineering problem, but not a well-

known one. One of the more compelling definitions of
software engineering is, “the multiperson construction of
multiversion software.”1 The popular view of software
engineering focuses on the first part of this definition—
managing teams to produce a large product. Most people
subscribe to this view because they see software engi-
neering as a discipline that tackles computing in the large,
elevating tools and techniques from the level of craft to a
position that lets developers harness them efficiently and

Cross-Platform
Development:
Software that Lasts

October 2006 27

two thirds of a project’s lifetime cost,2 devel-
opers of these narrower applications seem
unmoved to address the issues. More often than
not, the product’s final delivery also marks the
end of its developers’ involvement. From this
point, the software’s owners and users must
either work within the confines of the software
as is or employ new developers to adapt it.

We see no reason for developers of any type
to be victimized in this way. Through the use of
middleware constructed using reflection and
controlled through XML specifications, it is
possible to give the components in a large soft-
ware system a high degree of platform and
even language independence. The result is long-
lived software that can migrate gracefully as
platforms improve and change. For small
developers, this would mean change that does
not have to be onerous and costly.

Our solution particularly benefits develop-
ers of graphical user interfaces, since GUIs are
a pervasive and critical part of most software
and are well represented with cross-platform
toolkits and libraries. Indeed, we tested our
approach on an application in which one com-
ponent is a GUI library. Making such compo-
nents platform independent has challenged
cross-platform software development for many
years. We believe our solution will meet this
challenge and that it can address problems in
other domains with platform-dependent sys-
tem components, such as mobile devices.

TYPES OF CHANGE
Understanding how to manage change and

adapt software requires first understanding
how platform, functional, and nonfunctional
changes differ:

• Functional changes add facilities to the
software, retaining the existing platform
base and performance.

• Nonfunctional changes address performance issues—
better throughput, response times, security, power
consumption—but assume the same platform base.

• Platform changes require moving the software to
new or additional languages, operating systems,
hardware, or devices.

Our focus is on the third change category, particularly
on a system’s low-level, platform-dependent parts. An
organization invests in developing software that is based
on a given platform, and then finds that it cannot migrate
to a new platform because it relies on features that are no
longer available. If many parts of the software rely on these
features, as is true of graphics or networking, for example,

then any migration approach is desirable, given that the
organization otherwise faces complete reimplementation.

Functional and nonfunctional changes respond to the
outside world—society, trends, laws—as Figure 1 shows.
The system’s owners and users have a say in the timing
and extent of such changes, judging which are essential
and profitable. Conversely, platform changes come
about mainly because of technical advances—hardware,
operating systems (OSs), networking—and are not easy
to ignore or postpone.

Changing the OS in a major way can cause parts of the
system to fail. As the figure suggests, the resulting dis-
continuity between software and platform is much more
dramatic. Similarly, a hardware change will inevitably
affect some parts of a system.

A Platform by Any Name

As these definitions show, the line between hardware and software
platforms is rapidly becoming harder to discern.

platform. Although not strictly defined, the term generally constrains
language, operating system, computer, or some combination. Platform
examples include

• Java 2: Language and set of libraries that run on most operating
systems (OSs) and computers.

• Windows: An OS that runs almost exclusively on Intel processors
and supports many languages.

• Intel: Processor that can support many OSs, including Windows,
Linux, and Mac OS X.

cross-platform or multiplatform. Software that exists in different
versions so that it is available on more than one platform (in the same
dimension). Examples are

• Microsoft Office or iTunes, which are available for both Windows
and Mac OS X.

• Mac OS X running on Intel and Motorola platforms.
• Common Object Request Broker Architecture (CORBA) imple-

mentations for Java, Ada, C++, Python, and many other language
platforms.

platform-independent. Software regarded as having few or no
platform dependencies, but that is actually multiplatform. Describing
Java as platform-independent means that it runs on many platforms.

portable or retargetable. Software with qualities that would enable
all or most of it to be moved to another platform. Similar to “platform-
independent.”

port, retarget.To move software to a different platform, rewriting
parts as necessary. Software designed in layers is generally easier to
retarget.

28 Computer

It is the stress induced by platform change that we seek
to neutralize or, at least, control. In response to such
stresses, an organization could regard the crisis as an
opportunity to completely redevelop the software’s
platform-dependent parts, perhaps exploiting the
opportunity to refine them. Regrettably, this requires
developers who know both the software and the new
platform, a skill combination in short supply in most
organizations.

Moreover, retuning and adapting the software is no
guarantee that it will live longer because with the next
platform change comes a fresh change cycle. In our
approach, the idea is to anticipate and build for plat-
form changes from the beginning.

EXPLOITING DEVELOPMENT ADVANCES
Our approach brings together key software develop-

ment advances over the past decade and provides a way
to address the migration of overlooked platform-depen-
dent parts, such as GUI libraries. Figure 2 shows some

of the dramatic changes in the software develop-
ment landscape over the past five years, including

• advances in Sun’s Java Internet-based program-
ming platform (begun in 1996);

• Microsoft’s .NET with its common language run-
time support of many languages, as well as the
shared-source Rotor and open-source Mono ver-
sions;

• the rise of Linux as a popular Windows OS rival;
• increased use of Eclipse as a Java-based cross-

platform development tool, with IBM support;
• Apple’s initiatives to enable multiple OSs (Unix

then Windows) on its Macintosh computers; and
• a complete upgrade in the Windows platform to

Vista, including a new virtual machine (.NET
Framework 3.0) and a new GUI implemented in
the Windows Foundation Classes.

These advances alone do not guarantee that
software can survive a platform change. For
example, if an organization is developing GUI-
based software using Windows and wants to port
it to Mac OS X, the experiment will most likely
fail since none of the Windows .NET platforms

on the Mac support the Windows GUI application pro-
gramming interface (API). The shared-source version of
.NET (distributed as Rotor), for example, specifically
excludes the System.Windows.Forms library.3 Thus, a
major change in the Windows platform will mean that
much software will face migration to take advantage of
Windows Vista’s new features.

Our solution is to exploit certain software develop-
ment advances to build a new era of software that can
last—even in the face of numerous platform changes.
These advancements include APIs, cross-platform tool-
kits, reflection, virtual machines (VMs), and the
Extensible Markup Language (XML).

Application programming interfaces
The key to managing complexity has always been

abstraction, the oldest form being the subroutine.
Coherent sets of subroutines, or classes when object-ori-
ented, are further grouped into APIs—also known
as libraries or foundation classes. They are now a very

large part of any language,
almost dwarfing it in sheer
number of terms and func-
tions. For example, the API
for Java 2 comprises 166
packages, while the API for
.NET 2.0 is organized as 195
namespaces. The APIs are
very similar and cover fea-
tures that range from accessi-
bility to imaging, cryptology,

Applications

Platform

Languages
Operating systems

Devices
Hardware

Telecommunications

Profit
Society
Laws

Trends
Fashion

Forced
platform change

Controlled functional
and nonfunctional

change

Discontinuity

Figure 1. Causes of software and platform change. Functional and

nonfunctional changes respond to the outside world, but platform

changes are usually mandated and hard to ignore or postpone.

Consequently, time pressures to move the change along create a

discontinuity that is hard for small developers to manage.

.NET Rotor Eclipse 3.0 Java 1.5 C# 2.0 C# 3.0
C# 1.0 Mono 1.0 .NET 2 Windows Vista
Mac OS X Ubuntu Linux Mac OS X on Intel
Windows XP Rotor 2.0
Eclipse 1.0 Java 6

2001 2002 2003 2004 2005 2006

Figure 2. Platform development since 2001. Platforms like Java and .NET increase the possi-

bility for cross-platform and multilanguage software.

logging, mail, printing, and security to zip files.
Although APIs provide immense functionality, having

so many of them presents a real challenge in identifying
the right tool for the task and keeping up with modifica-
tions. The first GUI API provided for Java in 1996 was the
Abstract Windowing Tool, which went through two revi-
sions. In 2000, Swing replaced AWT, bringing some quite
different elements. The corresponding API in Windows
is System.Windows.Forms, which has remained stable
since 2001 with the major Windows language platforms
(C/C++, C#, Visual Basic, and so on). With Windows
Vista, however, the Windows Presentation Foundation
API will replace System.Windows.Forms. Even if WPF
is upwardly compatible with System.Windows.Forms, its
new features will affect existing software.

Ultimately, the API provides the interface to low-level
functionality, and if the API itself is not available on the
new platform, the only current choice is redevelopment.

Cross-platform toolkits
Cross-platform toolkits are integral to GUI develop-

ment. Like APIs, they provide a set of classes that define
the widgets (or controls or components) that developers
can create and manipulate in developing an event-
driven GUI. But unlike APIs, they define the widget set
independently of any platform and then provide multi-
ple implementations for many widely used platforms.
(In this context, “platform” can be a language or OS.)

Because of its platform-independent qualities, a toolkit
raises the odds of successful migration to a new plat-
form. However, there are two caveats: First, the original
software does not use the native API, which might make
programming awkward. Second, the GUI’s look and feel
might differ from that of an application that uses the
native GUI facilities.

The language the toolkit relies on is also a considera-
tion. Two popular toolkits, Trolltech’s Qt and Gnome’s
Gtk+, rely on C/C++, for example. Using them with other
languages requires creating additional code and inter-
faces to perform various mappings and bindings and
could require enclosing many classes in wrapper code.
All this can be daunting to a maintenance programmer.
Both Qt and Gtk+ define their own sets of widgets, which
are then platform independent. Unfortunately, they are
incompatible with each other, as well as with the native
widget sets that the language API provides.

Reflection
Reflection is a program’s ability to observe, and per-

haps alter, its own structure. In the context of main-
stream object-oriented programming languages, reflec-
tion is the ability to collect complete information about
an object from the metadata associated with it and
then to use these fields, properties, and methods in
allowable ways.

For example, a program might use reflection to obtain

a list of the fields and methods that an object possesses
and to obtain the fields’ data types and methods’ signa-
tures. Once a program ascertains that a field or method
exists, it might use reflection to access that field’s value
or to invoke a method.

Consider, for example, a completely general print
function that displays the names and values of all fields
in an object (a class instance). With reflection, this func-
tion need not include the names and types of all the fields
of all classes in the program even if the programmer
knows all this information in advance. As Figure 3
shows, reflection permits a much more concise and ele-
gant solution.

In general, reflection lets the programmer defer imple-
mentation decisions to runtime and thus provides a new
form of program abstraction. It is extremely powerful
when used in conjunction with APIs and toolkits.

Virtual machines
VMs provide an abstraction level just above the OS

layer. A VM implements a machine architecture that is
both computer and OS independent. To implement a

October 2006 29

using System.Reflection;

public class Reflect {
public int x;
public bool b;
public void Print (object obj) {

Type t = obj.GetType();
Console.WriteLine
("Object has type {0}", t.Name);

if (t.IsClass) {
Console.WriteLine
("Fields and values are");
foreach(FieldInfo fi in t.GetFields()) {
Console.WriteLine (" {0} = {1}",
fi.Name, fi.GetValue(obj));

}
}

}
static void Main() {
new Reflect().Print(new Reflect());

}
}

(a)

Object has type Reflect
Fields and values are
x = 0
b = False

(b)

Figure 3. Reflection.The example shows the use of reflection in

C# for a general print function that displays the names and val-

ues of all fields in an object. Without knowing any details of the

classes declared in the program, the Print method (a) will dis-

play the names and values of any fields declared as public in

any instance of any class. In this example, it is working on itself

with corresponding output (b).

30 Computer

programming language, a compiler translates a program
written in that language to the VM’s instruction set.
Using a VM has several important advantages:

• A compiled program distributed as instructions for
the VM is independent of all platforms that run the
VM.

• The VM controls the program’s access to files and
other system resources, thus providing a high level of
security.

• Using just-in-time technology, the VM can dynami-
cally translate the program’s VM instructions into
the host computer’s native instructions. With direct
access to the host computer’s resources, performance
is much higher than if the host computer interpre-
tively executes VM instructions.

Two widely used VMs are the Java VM and the .NET
Common Language Runtime. JVM executes Java byte
code that Java compilers generate. The CLR executes
Common Intermediate Language instructions generated
from any .NET language. A VM can enable code written
in different languages to interact. For example, the C#, VB,
and C/C++ compilers provided with .NET generate CIL
code. An important feature of .NET is that multiple CIL
modules from different compilers can be combined in a
single program. In this role, the CLR can help lengthen the
software’s life in the face of new language development.

When the VM has been implemented on many plat-
forms, as is the case with Java (and to a much lesser
extent with .NET), compiled programs are essentially
platform independent. Java applets fully exploit this
platform independence, enabling Web browsers that run

on almost any platform to download
and execute them.

Extensible Markup Language
XML is a platform-independent

notation for representing structured
data. Both XML and the ubiquitous
Hypertext Markup Language (HTML)
notation derive from the Standard
Generalized Markup Language
(SGML). As its name implies, XML is
extensible through the addition of tags,
and programmers have developed stan-
dard tag sets for an extraordinarily
diverse set of applications, including
spreadsheet data, calendars, mathe-
matical equations, stock market data,
and geographical mapping.

Although HTML notation looks
similar to XML, it breaks many XML
rules. A newer notation that does fol-
low the rules, XHTML, could one
day replace HTML.

XML’s platform independence and the availability of
standard tools on all platforms for manipulating XML
files make the language an excellent format for data
exchange. Even if two programs run on different plat-
forms, they can exchange data in XML form as long as
they agree on the set of tags in use. Thus, using XML as
the format for external data will lengthen the software
system’s life.

DEVELOPMENT FOR LONG LIFE
Figure 4 shows the stages of our method for develop-

ing a GUI that relies on platforms at different levels.
The code to create and manipulate a GUI is embed-

ded in the software, which is written in a language, L.
The calls (to create, lay out, and handle controls) are
methods in the toolkit. The toolkit can be in a language
other than L, but it will be compiled to the same VM.
A direct link between the toolkit and the underlying OS
helps render controls on output devices and event han-
dling. The objective is to increase the system’s overall
portability.

Language independence
Our method starts by introducing a language-inde-

pendent GUI specification notation to specify the
toolkit’s function—in short, quantifying the program-
mer’s interface. The theory underlying this step is based
on declarative user interface models,4 which describe
user interfaces as the controls displayed to the user,
including their composition and layout.

XML is now widely accepted as the preferred nota-
tion for these models: Instead of using the usual object
constructions for a label, textbox, and button,

Engine

XML specification

Software

Toolkit Virtual machine

Operating system
En

gi
ne

XML specification

Software

Virtual machine

Operating system

Engine

XML specification

Software

Virtual machine

Operating system

Software

Virtual machine

Operating system

+
optional Toolkit

(a) (b)

(d)

(c)

Figure 4. Development of a GUI that relies on platforms at different levels. (a) Normal

software, (b) language-independent software with engine-based access to libraries,

(c) platform-independent software with cross-platform toolkits, and (d) platform-

independent software with reflective libraries or toolkits.

Label request = new Label();
request.Text = "Password";
Textbox reply = new Textbox();
Button activate = new Button();
activate.Text = "Submit";

programmers write an XML specification

<Label text="Password"/>
<Textbox name="reply"/>
<Button name="activate" text="Submit"/>

The strategy of using separate specifications for
user interfaces appears to have originated with the
Extensible Virtual Toolkit 5 and has since become pop-
ular, with Eclipse’s Extensible User Interface Language
(XUL) being among the main proponents. The “XML-
Based Specifications for a Graphical User Interface”
sidebar describes three such systems. Figure 5 shows
a GUI specification for a small calculator in Views,
an XML-based system for GUI specification that we
developed.6

The handlers are in the code and refer to the methods
in Views to access the controls mentioned in XML, as
Figure 5b shows. For example, the method call
form.PutText("eurobox","0")would display the
string “0” in the TextBox control whose name is
“eurobox”and which has the label “Paid on hols.”
Programmers can also use the more familiar callback
notation, although when we designed the system, we felt
this was less desirable. The following assignment there-
fore can perform the same write to the textbox:

form["eurobox"].Text ="0";

where, by overloading the indexing operator, form pro-
vides access to the controls in the GUI. Within the Views
engine, the use of implicit type conversions avoids the
need for type casting.

As the sidebar describes, XUL, the Extensible
Application Markup Language (XAML), and Views
achieve the goal of reusable GUI specifications. The
XML design in each case is somewhat tied to the
expected underlying library, but there is considerable
commonality among widget names and behaviors.

The big difference between the two commercial nota-
tions and Views is that both XUL and XAML let pro-
grammers—but do not compel them to—embed
event-handling code (for XUL, JavaScript, and, for
XAML, any .NET language) within the user interface
declaration. The Views model, on the other hand, pro-
vides an engine that intercedes on the GUI’s behalf to
signal events to the host application.

The engine’s implementation language is irrelevant to
the Views user, who can be programming in VB, C++,
and so on. Programmers can exploit this separation of

notation and toolkit to maximize the cross-platform
qualities of GUIs.

Platform independence
In Figures 4a and 4b, the more difficult and less trav-

eled step is to decouple the software from specific knowl-

October 2006 31

// XML Specification
<Form text="Currency calculator">
<horizontal>
<vertical>
<Label text="Paid on hols"/>
<Label text="Charged"/>
<Label text="Exchange rate is"/>
<Button name="equals" text="="/>

</vertical>
<vertical>
<Textbox name="eurobox"/>
<Textbox name="GBPbox"/>
<Textbox name="ratebox"/>
<Button name="clear" text="Reset"/>

</vertical>
</horizontal>

</Form>

(a)

// C# code to interact with the GUI form
for(; ;) {
double euro = 1.0;
double GBP = 1.0;
string s = form.GetControl();
if (s == null) break;
switch (s) {

case "clear":
euro = GBP = 1.0;
form.PutText
("eurobox",euro.ToString("f"));

form.PutText
("GBPbox",GBP.ToString("f"));
break;

case "equals":
euro = double.Parse
(form.GetText("eurobox"));

GBP = double.Parse
(form.GetText("GBPbox"));

form.PutText("ratebox",
(euro/GBP).ToString("f"));

break;
}

}

(b)

(c)

Figure 5. XML specification. (a) GUI specification in XML for a

simple currency calculator, (b) the C# code that uses the form,

and (c) the result.

32 Computer

edge of the GUI in the VM, OS, or both, which are
responsible for rendering widgets and event catching

and redirecting. A popular way to achieve platform
independence at the GUI level is to base software on a

XML-Based Specifications for a Graphical User Interface

XML-based GUIs need both a specification and a set of
handlers.

XUL : XML User-Interface Language

XUL is the XML-based GUI specification model that the
Mozilla browser family uses. It has a rich notation for creating
widgets, and uses box, grid, and other layouts. Part of an XUL
specification for a simple currency calculator is

<script src="calculator.js"/>
<grid>

<rows>
<row>
<label id="l1" class="small"

value="Paid on hols"/>
<textbox id="eurobox"/>

</row>
</rows>

</grid>

By virtue of being embedded in HTML code, XUL code is
inherently cross-platform.The scripts for the handlers are
not in the program, however, but are in JavaScript in a sepa-
rate file, for example:

function clear() {
document.getElementById("eurobox").

value=1.00;
document.getElementById("GBPbox").

value=1.00;
}

This breaks the separation of concerns between the GUI
and the computational logic, which should be in the pro-
gram and in the program’s language. XUL’s sister language,
XML Binding Language (XBL), allows additional widget
customization.

XAML: Extensible Application Markup Language

XAML is the declarative markup language that Microsoft
introduced in Version 2 of the .NET Framework. It forms part
of the Windows Presentation Foundation (WPF) component
of the upcoming Vista platform for Windows. XAML is very
similar to Views in that it rides on the language interoperabil-
ity of .NET. Unlike Views, there are no push-based event
methods, and all handlers are also indicated as method
names similar to XUL. Of course, Microsoft does not intend
that anyone would actually write XAML: It is more the out-
put notation from the GUI-builder of Visual Studio.

There is nothing intrinsically cross-platform in XAML,
since it still relies on the System.Windows.Forms API for
events and rendering, and thus remains closely coupled to
the Windows platform. XAML is more verbose than the
other notations, especially in layout.The control specification
for an equals box would be

<Button Grid.Row="3" Grid.Column=
"0" ID="equals"Click="EqualsClicked">=
</Button>

The handlers are kept in a separate file, using partial
classes (a feature of .NET 2.0) and connected by name to the
XML, for example, private void EqualsClicked

(object sender, RoutedEventArgs e) {
double euro = 1;
double GBP = 1;
euro = double.Parse(eurobox.Text);
GBP = double.Parse(GBPbox.Text);
ratebox.Text = (euro / GBP).

ToString("f");
}

Views: Vendor-Independent Extensible Windowing

System

Views (http://views.cs.up.ac.za) is an XML-based library for
creating GUIs that we developed so that novice program-
mers in C# can develop nontrivial user interfaces without
having to use a professional development environment like
Microsoft’s Visual Studio.

Views was a project with Microsoft Research to extend
GUI functionality to the shared-source Rotor version of the
.NET platform, which does not include the GUI library.With
minor changes,Views became ViewsQt so that it was avail-
able on any platform with .NET and Qt, notably Linux run-
ning Mono.Views forms the basis for Mirrors, a
reflection-based system that offers a solution for building
long-lived software.

Views consists of an XML notation and a runtime engine
that initiates the rendering of controls and handles events.
The engine is not a toolkit, since it does not itself define a set
of widgets. Rather, it aims to expose some existing widgets in
an underlying API, System.Windows.Forms.

Using 10 standard methods, the engine traps events that
come from the OS and passes them to the program. Unlike
XUL and XAML, the GUI specification includes no code, and
the program does all event handling.

multiplatform toolkit that already has several imple-
mentations for common platforms. A program written
using one of these toolkits can move among the sup-
ported platforms without alteration.

Multiplatform GUI toolkits have long been popular
for enhancing the capabilities of languages and pack-
ages lacking built-in GUI facilities. Recent examples are
Rapid for Ada7 and FranTk for Haskell.8 Because these
languages have no user interface capability of their own,
they adopt the toolkit’s interface, and the programmer
inserts code to interact with the toolkit directly. For lan-
guages with a GUI capability, however, the toolkit’s
interface is essentially nonstandard for a programmer
trained in that language. Front-ends for building GUIs
and XML notations can alleviate this situation, but in
general these toolkits provide either platform or lan-
guage independence, not both.

In the .NET world, projects similar to Views have
ported GUI toolkits onto the Common Language
Infrastructure (CLI). The Mono project has translated the
Gtk+ toolkit into C#, the result being Gtk#.9 The pro-
grammer familiar with Gtk will feel comfortable calling
the well-known methods, but a .NET programmer who
must port a Windows program could be at a loss.
Creating a label, textbox, and button in Gtk# consists of

Label label = new Label("Password");
Entry entry = new Entry();
Button button = new Button("Submit");

which is quite different from the Windows equivalent:

Label label = new Label();
label.Text = "Password";
Textbox entry = new Textbox();
Button button = new Button();
button.Text = "Submit";

In other words, Gtk# is not a means for porting exist-
ing Windows programs through the CLI to the Linux
platform. Qt# is a similar project, intended to provide
a binding of Qt to C#, but it is still under development.

Taking a long-term software engineering approach,
we used the classic front-end to interface to the back-
end approach to remove all platform-dependent parts
of the Views engine and replace them with a cross-plat-
form GUI toolkit, in this case Qt. We started by extract-
ing the elements of Views that would be common across
toolkits, namely XML checking, parsing, and abstract
control creation. This group became the Views front
end. We created a special interface consisting of a few
easy-to-learn methods for event handling and replaced
all references to the System.Windows.Forms library
classes with calls to our interface.

So far, we had done all programming in C#. However,
because Qt provides its own interface, which is in C++,

we created an implementation of our interface for the
Qt windowing toolkit and provided a set of classes to
delegate calls from the C# objects to their counterpart
C++ objects. The resulting system, ViewsQt, can run on
any platform on which Qt runs, including Linux.10

Our experiments have shown that the ViewsQt code
is portable with only a few changes to the C++ classes
(related to interface inclusion and entry-point specifica-
tion) to compile and execute the code on Linux and Mac
OS X. On the Windows platform, ViewsQt works well
with the .NET Framework, Rotor, and Mono. In
essence, we were able to transform the system in Figure
4b (Views) to that in Figure 4c (ViewsQt).

Reflective libraries
The remaining dependency to be tackled was between

XML, the engine, and the toolkit. The engine explicitly
exposes the toolkit’s classes and the methods, which are
revealed in XML. Although it’s possible to move
between toolkits that have similar functionality, major
change would be difficult, which is where reflection
comes in. With the advent of .NET 2.0 and its new lan-
guage features, such as generics and anonymous meth-
ods, we were able to replace the Views system with
Mirrors—a system that reflects the GUI toolkit of
choice, be it Views, Qt, System.Windows.Forms, or any
other.

From the user’s view, Mirrors shares the same objec-
tives as Views, XAML, and XUL: to provide an XML
notation for GUI building and some means of connect-
ing event handlers for runtime use. However, the pri-
mary mechanism is reflection of the library to be used.
Consequently, in theory, Mirrors can instantiate any
class within any library and use all the defined proper-
ties and events for the specified class.

None of this information is hard-coded within the sys-
tem; it is available at runtime through the extensive use
of reflection. Mirrors can find relevant classes, events,
and properties at runtime without generating any code
or assemblies that need to be added during compilation.
Mirrors’ basic function is to provide a way of creating
the GUI and giving programmers easier access to the
controls within that GUI. This result is complete con-
trol over the GUI once the programmer has built it, and
the user can operate on the generated object as if the
Mirrors system were not there. Figure 4d shows the
resulting system.

For backward compatibility with Views specifications,
Mirrors recognizes two additional layout tags <hori-
zontal> and <vertical>, as Figure 6a shows. Each tag
introduced in XML is associated with a class in the
library. The tag’s attributes map onto properties of the
corresponding class. For example, in

<listbox name="picturelist"
type="pixmaplist" />

October 2006 33

34 Computer

listbox is the tag associated with the control class
ListBox; name and type are attributes associated with
the corresponding properties.

Class properties are discovered through reflection, and
if the program finds them to be a string, it simply gives
the property the value that follows. If the property type
is numeric, such as integer or double, the program first
passes that value through the object’s Parse method to
generate a suitable object. Typewas not a property vis-
ible in our original Views system. The value of
pixmaplist creates the thumbnails in Figure 6b. Thus,
we have harnessed the power of an underlying toolkit
without having it known to the engine or program.

Events are bound to methods within the user class,
which pass into the Mirrors class when instantiated,
thereby letting the programmer bind method handlers
to the controls. The event handlers do not have to pass
through a proxy layer and are bound directly onto the
created controls, giving the user complete control of the
object.

Programmers can use one of two methods to access
the GUI from the program: They can call the methods
through an engine such as the one Views provides:

form.PutImage("picture", photos[n, 1]).

Or, more generally, they can call the actual controls them-
selves, since the controls are available as objects through
the reflective interface:

(xml["picture"] as PictureList).Image =
photos[n,1].

The first method requires knowing one of an ancillary
engine’s methods (in this case Views). The second
requires knowing the underlying toolkit’s controls. The
developer can choose where to draw the line. The beauty

of the method is that, with simple refactoring, the devel-
oper can switch from one to the other during retargeting.

T hrough middleware built using reflection and con-
trolled with XML-based specifications, we
achieved a high degree of platform and language

independence for a GUI library. But other technologies
would also benefit from greater portability: for exam-
ple, the libraries associated with speech or gesture
recognition and handwriting translation. A growing
trend is wearable computing devices, which require
tangible user interfaces. TUIs integrate digital infor-
mation with everyday physical objects such as elec-
tronic tags, bar codes, and even clothing. The software
that drives these devices will undergo the same rapid
development cycle that we saw with cell phones, and
new versions will constantly emerge for newer mod-
els. In this domain, our solution would encapsulate the
essence of the TUI and enable the drivers or toolkits to
migrate in time.

The size of mobile devices such as phones and PDAs
restricts GUI capabilities. Such devices also tend to run
their own VM and OS versions, making them prime can-
didates for our reflective approach.

Adapting a GUI to a variety of resources with differ-
ent capabilities is one of the most interesting issues in
mobile computation. One approach11 maps a single user
interface specification to differing devices using mobile
agents built with XUL. Another approach12 isolates fea-
tures that are common across various use contexts and
specifies how the output would adjust when the context
changes. Most of this work, however, is at the front end,
where adaptability is confined to variations of a single
OS, such as Java and JavaME, or Windows and
Windows CE. Our approach, in contrast, targets back-
end portability as well.

<form text="My Photo Album">
<vertical>
<label text="My Photo Album"

fontsize="16" halignment="center" />
<horizontal>
<listbox name="picturelist"

type="pixmaplist" />
<label name="picture" />

</horizontal>
<horizontal>
<space orientation="horizontal" />
<button name="exit" />

</horizontal>
</vertical>

</form>

(a) (b)

Figure 6. Sample input to Mirrors. (a) Input that generates an image and thumbnails. (b) Using reflection, Mirrors can find relevant

classes, events, and properties at runtime without generating any code or assemblies that need to be added during compilation.

Reflection is a software mechanism that transcends
change. Coupling it with XML and toolkits gives a
brighter future for software developers. ■

Acknowledgments

This work was supported by Microsoft Research, a
South African Department of Trade and Industry
(THRIP) grant, and a Discovery grant from the Natural
Sciences and Engineering Research Council of Canada.
We acknowledge the hard work and inspiration of
David-John Miller and Hans Lombard (Mirrors), Basil
Worrall (ViewsQt) and Jonathan Mason (Views 2).

References

1. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of
Software Engineering, Prentice Hall, 1991.

2. J. Koskinen, “Software Maintenance Costs,” 2003; www.cs.
jyu.fi/~koskinen/smcosts.htm.

3. D. Stutz, T. Neward, and G. Shilling, Shared Source CLI
Essentials, O’Reilly, 2003.

4. P.P. da Silva, “User Interface Declarative Models and Devel-
opment Environments: A Survey,” Proc. DSV-IS2000, LNCS
1946, Springer-Verlag, 2000, pp. 207-226.

5. M. Rochkind, “XVT: A Virtual Toolkit for Portability between
Window Systems,” Proc. Usenix Winter Conf., Usenix, 1989,
pp. 151-163.

6. J. Bishop and N. Horspool, “Developing Principles of GUI
Programming Using Views,” Proc. ACM SIGCSE, ACM
Press, 2004, pp. 373-377.

7. M.C. Carlisle and P. Maes, “RAPID: A Free, Portable GUI
Designer for Ada,” Proc. SIGAda 98, ACM Press, 1998, pp.
158-164.

8. M. Sage, “FranTk—A Declarative GUI Language for
Haskell,” Proc. 5th ACM SIGPLAN Conf. Functional Pro-
gramming, ACM Press, 2000, pp. 106-117.

9. N.M. Bernstein, “Using the Gtk Toolkit with Mono,” Aug.
2004; ondotnet.com/pub/a/dotnet/2004/08/09/gtk_mono.
htm.

10. J. Bishop and B. Worrall, “Towards Platform Interoperability:
Retargeting a GUI Library on .NET,” Proc. 3rd Conf. .NET
Technologies, Union Agency-Science Press, 2005, pp. 23-33.

11. N. Mitrovic and E. Mena, “Adaptive User Interface for Mobile
Devices,” Proc. 9th Int’l Workshop Interactive Systems
Design, Specification and Verification, Springer-Verlag, 2002,
pp. 247-261.

12. J. Eisenstein, J. Vanderdonckt, and A. Puerta, “Applying
Model-Based Techniques to the Development of UIs for
Mobile Computers,” Proc. ACM Conf. Intelligent User Inter-
faces, ACM Press, 2001, pp. 69-76.

Judith Bishop is a professor of computer science at the Uni-
versity of Pretoria. Her research interests are programming
languages, distributed systems, and Web-based technolo-
gies. Bishop received a PhD from the University of
Southampton. She is a fellow of the British Computer Soci-
ety, the Royal Society of South Africa, and the South African
Academy of Science and is a member of the IEEE Computer
Society and the ACM. Contact her at jbishop@cs.up.ac.za.

Nigel Horspool is a professor of computer science at the
University of Victoria. His primary research interests are in
compiler construction and programming language imple-
mentation. He received a PhD from the University of
Toronto. He is a member of the ACM. Contact him at
nigelh@cs.uvic.ca.

October 2006 35

• Visualization Corner
• Computer Simulations
• Book Reviews
• Scientific

Programming
• Technologies
• Education
• Your Homework

Assignment

Save 42%
off the non-

member price!

$43 print subscription

Subscribe to CiSE online at http://cise.aip.org and www.computer.org/cise

Peer- Reviewed Theme & Feature Articles

2 0 0 7

The magazine that helps scientists

to apply high-end software

in their research!

Specific tips
from one scientist

to another

Speed up and improve
your research

Focuses not on how computers work,
but how scientists can use computers

more effectively in their research.

Top-Flight
Departments
in Each Issue! Anatomic Medical Model Construction/Visual-

ization
Stochastic Modeling of Complex Systems
Python: Batteries Included
Anatomical Medical Model Rendering/Simula-
tion
Computing in Combinatorics
High-Performance Computing
Defense Applications

Jan/Feb

Mar/Apr
May/Jun
Jul/Aug

Sep/Oct
Nov/Dec

