
COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 65

There exists voluminous literature on cost estimations for
producing software, but that literature largely ignores the
benefits of using that software [4]. Even software engineering
management approaches termed “earned value management”
only deal with expenses within a development schedule [1].
While software creators believe their product is valuable, they
rarely quantify its benefits. Much investment in software engineer-
ing has been motivated by military and governmental applications,
where benefits are indeed difficult to quantify. When benefits of soft-
ware in commerce must be quantified, it is typically left to lawyers, econ-
omists, software vendors, or promoters to assign value to our products.
The results are mostly inconsistent [8].

Why should software creators care? In many other fields the creators have a sub-
stantial awareness of the value of their products. Architects are aware of the market
for houses they design and builders of bicycles will know their market. But since soft-
ware, once written, is easy to replicate at a negligible cost, each subsequent instance
is sold for much more than its incremental cost. Potential sales volume is a key fac-
tor required to set a price allowing an adequate future income. That income deter-
mines the value of the product to the creator.

WHAT IS YOUR
SOFTWARE
WORTH?
By applying well-known principles
of intellectual property valuation,
sales expectations, growth of
maintained software, discounting
to present value, and the like, a
method is presented for valuing
software based on the income that use of the software
is expected to generate in the future.

B y G i o W i e d e r h o l d

illustration by paul wiley

66 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

The value of software to a purchaser is
independent of the cost and effort
spent to create it. A few brilliant lines
of prose or code can have a very high
value, whereas a million lines of code
that generate a report that nobody

reads have little value. If creators are aware of the
potential value of the product they will be better pre-
pared to make decisions on product design and the
effort to be expended. The motivation for this article
is to increase the awareness of the computing com-
munity how the result of their work may be valued.
That should, in turn, affect how software engineering
is practiced.

I first present the principles of valuing intellectual
property (IP), based on the income generated by a
software product. The valuation addresses software as
it exists at some point in time, and ignores the cost of
its creation. Once the value of the product is esti-
mated, one can compare that value with the cost of its
creation and decide if the overall project is profitable,
or, if it seems not to be, what must be changed to
make it so.

Software, since it improves and grows over time,
presents novel issues not seen in other intangibles as
music and books. Maintenance to sustain software
effectiveness occurs throughout the time the software
is in use; that is, while the software actually generates
benefits. Maintenance costs over time typically exceed
the original software development cost by factors of 2
to 10. Maintenance causes growth of software, and we
show here how three types of maintenance efforts
together affect growth and value. The growth of soft-
ware will also be modeled using some rules-of-thumb
derived from experience.

After the discussion on the diminution of software
IP we predict sales volumes for software. Standard
business methods are presented, selected for their
suitability in modeling software sales. We then com-
bine prior results to compute the value for the exam-
ple. To illustrate the use of a quantitative model for
analyzing alternatives, we include maintenance
income, representing a service-oriented business
model. We conclude with some advice for individu-
als, managers, and educators.

The goal of this article is to bring together infor-
mation from domains that rarely interact directly:
software engineering, economics, business practice,
and legal sources.

PRINCIPLES OF IP VALUATION

Assigning value to intangible property is assuming
greater and greater importance, as our society moves
from dependence on hard, tangible goods to a world

where knowledge and talent creates the intangible
goods we need and desire. Many approaches for val-
uation compete [5]. Tangible goods are produced by
a combination of labor, capital, machines, and man-
agement; the quality of the human components
plays a minor role in valuing such a company. Even
today, the book value of a company given in its
annual report is merely the value of its facilities,
inventory, equipment, and finances.

That book value has little to do with how investors
value companies in the software domain. For exam-
ple, we obtain SAP’s annual report for 2003 and learn
that its book value (assets - money owed) was about
e6.3 billion. But using the market price of the shares
(about e100) and the number of shares in circula-
tion, about 315 million, we find that SAPs share-
holders valued the company at e31.5 billion. The
investors in SAP base the value mainly on the income
they expect to obtain over time from their shares. The
difference, e25.2B, is due to the intangible property
owned by SAP and its shareholders. The value of the
SAP brand in 2004 was estimated at e6.8B. Soft-
ware, and the knowledge of how to produce, improve,
and sell it, comprise the rest, e18.4B. U.S. high-tech
companies show similar ratios, but no routine report
provides valuations of their intangibles [11].

The intangible property owned by a company in
the knowledge-based domain includes the technical
knowledge of its staff, the competence and insights of
its sales force, the business knowledge of its manage-
ment, the worth of its trademark, its reputation, and
the value of its software inventory.

The reputation of a software company can be
increased by advertising and the value of its software
can grow by research and development. These two
components are the considered IP of a business. The
work force of a company cannot be considered a
property. Valuation of IP is required when software
product lines are purchased or transferred. When
entire companies change hands, then the work force
is assigned a value as well. Although software is the
most tangible of the IP owned by businesses, its valu-
ation is still poorly understood, leading to a gamut of
problems [8].

The value of software IP. Investors in a software
enterprise assert through their stock purchases that

IP RULE: THE VALUE OF THE INTELLECTUAL PROPERTY IS

THE INCOME IT GENERATES OVER TIME.

That simple rule is the basis for any IP valuation.
Estimating that future income and reducing it to a
single current value is the task to be undertaken [11].

This article focuses only on software, likely the

largest IP component owned by companies involved
with computing. Ownership of software is not limited
to companies that produce software as a product. The
majority of current businesses creates, purchases,
maintains, and benefits from software. Banks cannot
function without software; there is no other way to
determine what is due to a customer or what the cus-
tomer owes. Manufacturers cannot live without soft-
ware; the designing process, obtaining and allocating
resources, managing the workflow, and shipping the
goods out all depend on software—and companies
that exploit software better will be more profitable.

Estimating income. To value the IP inherent in
software, one must estimate how much income
the software will generate during its
future life, which also requires estimat-
ing its life. We distinguish here soft-
ware producers and software users.

If the software produced is sold
to others, the expected income
depends on the sales revenue, the
product of the amount of software sales, and its
price. We assess the software from the viewpoint
of the seller. When a new version of a software
product has been prepared and is ready for sale,
sales of the prior version will rapidly diminish.
Since the costs of copying and packaging soft-
ware are very low, there is no benefit in con-
tinuing to sell the old software, a characteristic
particular to intangible property. Software differs
from other intangibles: while a book written and
printed two years ago can be profitably sold for, say
80% of its new price, selling a prior version of soft-
ware at an 80% price makes no sense for the seller.
Supporting old versions is only a cost for the seller,
while being out-of-sync creates inefficiencies for the
customer.

Furthermore, the new version will be better than
the previous version. For the purchaser obtaining
cheap, but obsolete software creates expenses for adap-
tation and integration. A new version of the software
product includes much of the code and all of the
functionality of the prior version. Disasters have
occurred when new versions did not replicate all prior
functionalities [12].

If software is developed and used internally, valuing

it as a distinct income-generating investment becomes
impossible. Today, it is rare that a broad set of new
software applications will be installed within an ongo-
ing company. A company employs many diverse
resources to generate its income. Income can still be
assigned based on a belief that the management of a
company is rational in the allocation of its resources—
a standard textbook assumption.

PARETO RULE: AT THE OPTIMUM EACH INVESTMENT

DOLLAR SPENT GENERATES THE SAME BENEFIT.

If a company spends more than optimal on soft-
ware and less on people or marketing it would reduce

its income, and vice versa. Given that rule, corpo-
rate net income created by diverse expenses can

be allocated according to the proportion of
costs incurred. The fraction spent on software
from year to year will vary, but over its life

such variations even out. If a company behaves
irrationally in its spending, more so than its

peers, it is bound to have lower net profits, and its
IP and its stockholders will suffer as a result.

Income-based measures don’t work in gov-
ernmental and military settings. In those

organizations measures of productivity and
cost-avoidance must be combined to
produce a surrogate for income. In those
settings, and in other non-profit institu-
tions, as academia, using an assumption
of rational behavior for relative alloca-

tion is also questionable. Valuations of
software will hence be quite inexact and

mainly useful for making comparisons.
Revenue and gross profit. In business financial

reporting the revenue realized is immediately reduced
by the cost of the goods sold. The effort to make the
first unit of a product is a major cost in both cases,
but for software the manufacturing cost-of-goods is
negligible. If software distribution is over the Inter-
net, there are no incremental costs for each sale. Rev-
enue and gross profit, the revenue after the
cost-of-goods sold, become similar, and common
financial indicators, as gross margin, are close to one
and meaningless.

Since we only assess here the value of existing soft-

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 67

If creators are aware of the potential value of the product they will be better
prepared to make decisions on product design and the effort to be spent.

ware, we ignore its initial research and development cost
and its negligible manufacturing cost. Now the income
per unit is equal to the revenue, that is, the price it
fetches and the sales volume over its life. However, there
will be ongoing costs to keep the software viable.

SUSTAINING SOFTWARE

Before we can aggregate the income generated by
software in order to value its IP, we must consider
what happens to software over the time it generates
income. It is here where software differs crucially
from other intangible goods. Books and music
recordings remain invariant during their life, but
software keeps on changing.

Methods used to depreciate tangibles as well as
intangibles are based on the assumption that the
goods being valued lose value over time. Such depre-
ciation schedules are based on wear, the loss of value
due to obsolescence, or changes in customer prefer-
ences. However, well-maintained software, in active
use, does not wear out, and is likely to gain value [12].

All substantial business software must be sustained
through ongoing maintenance to remain functional.
What maintenance provides was stated many years
ago by Barry Boehm [4]:

“.. The majority of software costs are incurred dur-
ing the period after the developed software is
accepted. These costs are primarily due to software
maintenance, which here refers both to the activities
to preserve the software’s existing functionality and
performance, and activities to increase its functional-
ity and improve its performance throughout the life
cycle.”

Successful software products have many versions,
long lifetimes, and corresponding high maintenance
cost ratios over their lifetime. Software lifetimes
before complete product (not version) replacement is
needed are typically 10 to 15 years, and are likely to
increase [11]. Version frequency is determined by the
rate of changes needed and the tolerance of users to
dealing with upgrades.

Maintenance costs of such enterprise software
amount to 60%–90% of total costs [10]. Military
software is at the low end of the maintenance cost
range, but is poorly maintained and instead requires
periodic replacement. Its users can’t complain much.

Continuing improvement. We use IEEE standard
definitions for the three classes of long-term mainte-
nance. Collecting and responding to feedback, crucial
to IP generation, is detailed next.

• Corrective maintenance is essential to keep cus-
tomers. In practice, most required bug fixing is
performed after software delivery. If it is not suc-

cessful, the product will not be accepted in the
marketplace and not have any significant life.

• Adaptive maintenance is needed to satisfy external
mandates. Adaptations allow the software to deal
with new hardware, operating systems, network,
browser updates, as well as other software used in
the customers’ environment. Software must also
be adapted to changing governmental and profes-
sional regulations.

• Perfective maintenance keeps the customer happy
and loyal [2]. Perfecting includes performance
upgrades, assuring scalability as demands grow,
keeping interfaces smooth and consistent, and
being able to fully exploit features of interoperat-
ing software by other vendors, as databases, Web
services, schedulers, and the like. Perfecting
makes existing software work better.

Bug fixing for software accepted in the
market eventually reduces to less
than 10% of the maintenance effort.
Adaptation consumes 15%–50% of
the maintenance costs. That effort
needed varies with the number of

interfaces that must be maintained. Perfecting soft-
ware is known to require about half of maintenance
costs in the long term. Marketing staff often touts the
results of perfective maintenance as being novel and
innovative, even when base functionality does not
change.

The effectiveness of maintenance is greatly hin-
dered by poor design and lack of adequate documen-
tation [3]. Well-designed systems will be improved
more rapidly, have a longer life, and hence, paradoxi-
cally, consume more maintenance [6]. Figure 1
depicts relative effort distribution over time; in prac-
tice the ratios will differ depending on the setting and
on external events.

Good maintenance keeps existing customers
happy and improves the product being sold. A high
level of maintenance retains customers (it is easier to
keep an old customer than to gain a new one) and
gains income (good maintenance has a high value to
the customer). Fees for maintenance can contribute
in time more revenue than new sale licenses.

Sources of IP in the maintenance phase. Mainte-
nance is too often viewed as work requiring little
expertise. That view ignores the contribution of the
diverse information sources needed for maintenance.

Corrective maintenance is based on feedback from
the users and customers. Error reports will be logged
and filtered so that only significant problems are for-
warded to the engineering staff. Corrections are often
needed when unexpected cases or novel combinations

68 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

of usage are identified. If the original developers are
still involved, fixing bugs becomes an opportunity to
learn, rather than a task to be dreaded. Code to deal
with those cases is added, and so the software grows.

Adaptive maintenance is based on information
from standards bodies, from hardware vendors, from
software vendors who make products that interface
with the software, and from government sources.
Major suppliers have representatives at many external
organizations and vendors. It is rare that prior inter-
faces and capabilities are removed, thus the software
grows.

Perfecting software is a
process, perfection is elu-
sive. Perfecting requires
the entire organization to
listen, prioritize, and act
on feedback. Open-
minded sales staff can
provide the best input
[6]. For instance, no sci-
entific method assures
that interfaces with
human users will be
attractive; there is more
variety of customers in
the global market than
any specification can
encompass; and there will
always be new uses for
software that with some
changes can be catered to.
Perfecting updates should not disturb current users.
Perfecting software is a major contribution to growth.

The inputs that lead to maintenance actions repre-
sent IP not present in the original product. Hence,
they should not be valued as part of the original IP.

GROWTH OF SOFTWARE

Since software IP is embedded in the code being
used, and that body of code changes over time, we
must now measure what happens to the code and its
functionality.

Two metrics are in common use for estimating
code size and effort: Lines-of-code and function
points. Both have problems, but they also comple-
ment each other.

The size of programs can be measured once the
software is completed. One can look at lines-of-
source-code (SLoC) or the volume of binary code.
Some adjustments are needed in either case. When
counting SLoC comment lines should be ignored,
and multiple statements on a line should be counted
distinctly. Software modules that appear multiple

times are counted only once to obtain the IP. If mod-
ules have been written in multiple languages, then
conversions must be made. The function-point (FP)
literature provides tables that relate them to code for
many languages [7]. Common procedural languages
have ratios of about 100 SLoC to one FP, while Visual
Basic is rated at 35 SLoC/FP, allowing normalization.

Binary code sizes require adjustments as well.
Relative value of old and new code. We measure

code sizes to allocate its relative contribution to IP. The
assumption we will make, namely that the value of a
unit of the remaining code is just as valuable as a unit

of new code, simplifies
the IP analysis in the next
section. This metric pro-
vides a surrogate to track
IP growth over time.

There are valid argu-
ments that code size is
not a surrogate for the IP
contents. One argument
is that later code, being
more recent, represents
more recent innovation,
and hence should be val-
ued higher. An argument
in the opposite direction
that the basic functional-

ity is represented by the initial code. There may have
been a few lines of brilliant initial code, slowly buried
in a mass of subsequent system interfaces and later
tweaks and fixes, that are critical to the IP. The archi-
tectural component of software also represents valu-
able IP and changes little over the life of the software.

Much more code is inserted later to deal with error
conditions that were not foreseen originally. Code
that was added during maintenance has its value
mainly in terms of providing smooth operation and a
high degree of reliability. The original code provided
the functionality that motivated the customer’s acqui-
sition in the first place. If that functionality would
have been inadequate the customer would not move
to any subsequent version. However, new code will
include adaptations and perfections that motivate
additional sales.

Given that the positives and negatives can balance
each other out, it is reasonable to assign the same
value to lines of old and new code to measure the IP
contributions in software. As long as the methods to
obtain metrics are used consistently and without bias,
the numbers obtained will be adequate for the inher-
ently difficult objective of valuing software.

Growth of code. The maintenance activities that
sustain software cause the software to grow in size, as

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 69

Gio fig 1 (9/06)

Lifetime

20%

Corrective
 maintenance

Adaptive
 maintenance

Perfective
 maintenance

40%

60%

80%

100%

Figure 1. Maintenance effort over
the lifetime of software.

previously discussed. Hennessy and Patterson pre-
sented a rule that software, in terms of lines-of-code,
grows by a factor 1.5 to 2 every year. However, this
rule implies exponential growth, expected for hard-
ware, but such a rate of growth cannot be sustained in
software development. Phil Bernstein of Microsoft
has suggested that

PB RULE: A NEW VERSION OF A SOFTWARE PRODUCT

SHOULD CONTAIN LESS THAN 30% NEW CODE.

Substantial growth implies too many code interac-
tions in the new version, reducing reliability. Cost
estimation tables support such barriers [7]. Complex-
ity limits were clarified in Fred Brook’s essays: since

programming and programming management effort
grows exponentially with size, a growth that is more
than linear cannot be supported in practice by rea-
sonable growth programming staff. We could validate
a rule reported by David Roux that defines a more
modest growth rate:

DR RULE: SOFTWARE GROWS AT EACH VERSION EQUAL TO

THE SIZE OF THE FIRST WORKING RELEASE.

A similar behavior was observed for operating sys-
tem modules, as well as its effect on maintenance
costs [3].

If we call the first working software Version 1, the
DR rule means the expected growth is 100% from
Version 1 to Version 2, 50% from Version 2 to Ver-
sion 3, 33% for Version 3 to Version 4, and so on, as
shown in the top of Figure 2. The amount of new

code due to growth is 50% in Version 2, 33% in Ver-
sion 3, 25% in Version 4. By Version 3 software
growth obeys Bernstein’s limit. In the early phases of
a product a higher rate of growth is certainly possible;
all the original developers are likely to be still on
board, there is good understanding of the code, and
feedback from the field can be rapidly accommo-
dated, so exceeding the PB rule limit initially seems
acceptable. If the valuation is for a later version the
subsequent growth will not appear so rapid.

For simplicity we consider the initial IP repre-
sented by remaining amount of code from Version 1
through the years. In Figure 2 that amount is repre-
sented by the darkest blocks. In our example we ana-
lyze seven versions, each lasting 18 months, for a

10-year horizon. We adjust the results
to the end of each year, since income is
counted at the end of each year.

Code scavenging. Some code is scav-
enged, during maintenance that is,
deleted and replaced by new code. In
practice the rate of code deletion is
small, about 5% code per year, and
mainly associated with module replace-
ment. There is little cost to leaving code
in place, since the amount of memory
and storage available has outstripped
the growth of code. But there is a high
risk to removal, since some user’s pro-
gram may still depend on features that
depend on that code. Removing code
takes more time than writing new code.

GW RULE: WITHOUT INCENTIVES, 5% OF

THE CODE PER YEAR IS REPLACED DURING

MAINTENANCE.

The limit of removal of code for a
new version, even after several years,
appears to be 20%–25%. Beyond that
level it is better to rewrite the code [6].
However, wholly new code entails

severe risks of creating incompatibilities for existing
customers.

Since the estimate for the total code size in succes-
sive versions is independent of the rate of deletion we
consider that the deleted amount will also be replaced
by new code. Since the code base grows, more code in
absolute terms is replaced annually as time goes on.

We also assume that code replacement fractions are
equal for existing code and for code added later dur-
ing maintenance. We can now combine the effect of
code growth and code scavenging. If new versions of
the software appear every 18 months, then the

70 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

Gio fig 2 (9/06)

New code in V4=

V4V3V2

V1

V5 V6 V7 V8

V1

V1

Replacement rate

New Versions V

1 2 3 4

4

2

1

0

1.00

0.75

0.50

0.25

5 6 7 8 9 10

D = 5% / year

YearsRelative
Contribution

Relative
Code Size

V1+ D x Tv4 x V3

V1

V2 V3

V2

V4

V4

V3

V3
V3

V2

V2
V2

V2

V1 T2
V1 T3 V1 T4

V1 T4
V1 T3

V1 T2

Tv4 x 1.5

Price = constant

Contribution
of V1

New code

Rule DR: V3 = 3 x V1

Figure 2. Code growth and diminution of earlier contributions over time.

Figure 2.
Code growth
and diminution
of earlier
contributions
over time.

amount of new code in Version 2 becomes about
53%, in Version 3 it’s 71%, and in Version 4 it’s 79%.
The influence of the original code and its IP dimin-
ishes steadily.

DIMINUTION OF SOFTWARE IP
To relate code sizes to IP value we observe that the
price of a software product remains approximately
constant, although the code representing that soft-
ware grows steadily. We use that observation to allo-
cate income.

Income from a software product
over time. Although the body of
code grows over time, the price of a
unit of software sold tends to stay
quite stable, typically increasing less
than the rate of inflation. From the
customer’s point of view a new ver-
sion does not add value, it only pro-
vides the scope, reliability, and ease of
use that should have been available in
the first place. Keeping the price sta-
ble for a known and reliable product
discourages entry of competition.

P: THE PRICE OF SOFTWARE FOR THE

SAME FUNCTIONALITY IS CONSTANT,
EVEN IF IT IS IMPROVED.

We now rescale the code contri-
butions based on a constant
expected price to obtain the relative
contributions of the versions to the
price, as shown in the lower part of
Figure 2. The rapid growth of soft-
ware, especially initially, diminishes
the value of the initial IP contribu-
tion to the product.

Providers of enterprise software commit themselves
to deliver any further versions of the software to exist-
ing customers, as long as an annual maintenance fee is
paid. Such a scheme is attractive to the customer, who
can predict expenses into the future, and the vendor,
who collects a steady income at low sales costs from
efforts that are already required to gain additional cus-
tomers. Typical rates charged customers for ongoing
support are 15% of the original purchase price. Of
that amount a small fraction goes into sales support,
the effort to get the customer to upgrade to the new
version. A larger fraction goes to routine call-center
support. The remainder of the support fees, amount-
ing to 6%–10% of the purchase price in every subse-
quent year, is available to the engineering staff for the
types of maintenance presented earlier. That income

also supports most improvements needed to attract
new customers to an existing product.

We consider below enterprise software, such as
databases and application tools built on top of them.
Shrink-wrapped software differs in terms of market-
ing, but its IP assessment is remarkably similar. For
software developed and used in-house benefits are
case-specific, and much of next discussion dealing
with sales volume, will not apply.

Penetration. If the income per unit of software sold
is constant, then income increases are due to the

growth of unit sales. Sales can increase until its mar-
ket is substantially saturated. To reduce uncertainty
the size of the candidate market should be estimated
using multiple approaches. Common ways include
using information about a predecessor product, the
number of businesses that need the functionality of
the new product and of customers that can afford the
product, the number of a certain type of computer or
operating system in use, and similar bounds. A 50%
penetration is optimistic; beyond that level distortions
occur in the market due to the ability to employ
monopolistic practices.

A truly useful and well-marketed product can
become rapidly known to the customer community
via the Internet. A software product can be rapidly
delivered to all customers, so that substantial penetra-
tion is achievable in a short time. If software installa-
tion requires a major effort, then the sales peak will be
delayed. Further growth can occur if the number of
candidate customers grows.

There is some literature on sales expectations [9].
Simple models use normal curves to describe the

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 71

Gio fig 3 (9/06)

7000

8000 Incomes: gross, net, and after cost (-cost)

Gross sales revenue for Erlang m=12 assumption

Maintenance revenue

Maintenance costs

Version 1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 end
Years 0 1 32 4 65 7 8 9 10 1211 13 14 15 16 1817 19

sales < costs

10% x max

Income <
unadjusted cost

Total gross revenue
-cost

-cost

net

net

net

$K

6000

5000

4000

3000

2000

1000

0

-1000

-2000

Revenue (Erlang)

Net sales income
Maintenance cost

Maintenance revenue

Net Maintenance income

Total revenue

Net total income

Revenues - cost

Net incomes - cost
Adj. Maintenance cost to X Adj. Net income - cost to X

Figure 3. Revenue
from sales,

maintenance cost,
and income, and

their combination.

range of customers from early adopters to broad
acceptance to laggards. A problem with a normal dis-
tribution is that it extends into the past, so the actual
point where sales commence is undefined.

A good fit to actual software sales curves has been
obtained using Erlang distributions. Just as the nor-
mal distribution, an Erlang distribution is also con-
trolled by the mean and variance of the data, but has
a definite starting point. Fitting provided data yielded
Erlang parameters from m=6 to m=20. In our sample

we use the expected total sales and end when annual
sales are less than 10% of the best year. Using m=12
yields the gross sales revenue in Figure 3.

Sales based on some fixed IP can never continue for-
ever. Eventually the market penetration is complete,
and only replacements are sold. The simple Erlang
model shown ignores convoluting factors. For instance,
a product that depends on some infrastructure, say
Unix, will be affected by the growth or lack of growth
of the Unix market. Transborder business is subject to
restraints and financial imbalances.

During the rise of the dot-com business boom many
projections were faulty. Realistic assessments of con-
sumer markets could have helped. In a freshman class
of 1998 we considered the expectations for online toy
sales and found that by the year 2003 more toys were
expected to be sold on the Web than the total number
of toys being sold, an unsustainable situation. Such
simple checking of limits and identifying inconsisten-
cies can prevent many problems due to excessive expec-
tations. For instance, infrastructure companies like
Cisco and other communication companies that
accepted orders from enthusiastic dot-com start-ups,
could have realized the total equipment being ordered
was greater than the world could absorb and afford.

Expenses attributable to software. For pure soft-
ware companies gross profit is nearly the same as rev-
enue from sales.

Businesses still have operational costs to be sup-
ported by the gross profit: software maintenance,
marketing, advertising, sales staff, administration,
interest for working capital, and so on. Since no rev-
enue will be generated without such costs these costs
reduce the benefits of the initial software. The share-
holders will also want their share of the pie, either as
dividends or as reinvestments to grow the company.

The required information is available in the finan-
cial statements of public companies, as annual reports

or published 10-K statements.
For a new company one can try
to find similar businesses and use
their ratios. For our example soft-
ware company we assign

5% to cost of capital—interest
on loans, no dividends on ini-
tial or venture funds;

45% to administrative costs,
including sales and distribu-
tion

25% to software research and
development; and

25% to marketing and
advertising.

There can be much variance in
these numbers, so data, to be
credible, should be aggregated

over several years and validated by comparison with
similar businesses.

Low capital requirements are typical for the soft-
ware industry once a company is operational. Low dis-
tribution costs are also typical for software, especially
if Internet capabilities can be exploited. To gain visi-
bility, however, substantial advertising may be needed.

Our sample company invests in future growth.
The investors, being stockholders, expect to benefit in
the long term from increased share prices and defer
paying taxes. Part of that aspect is captured indirectly
in the valuation, namely in the increased value of the
product due to ongoing maintenance, as described in
the upcoming section on maintenance effect. The
software budget is used to improve the current soft-
ware and to develop new products, generating new IP
and hence new value to the stockholders, and is a sur-
rogate for profit.

In this model we take advertising expenses just as a
current expense, even though they also increase the IP
value of the company. The effects of advertising tend
to be short-lived, and have less importance than word-
of-mouth recommendations about quality software.

Future allocation. For the valuation, the current

72 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

Table 1. Summary of software benefit factors over a 9-year horizon.

Gio table 1 (9/06)

Factors Today

Relative size (rule DR)
Growth R-1
Replaced (rule GW)
Initial code left 1- Rep
Fraction old O/R
Unit price ($) (rule P)
Units sold
Revenue (K$) Us×Up
SW share @ 25%×Rev
From initial SW F×Ss
Discount @15% 1/1.15 y

Discounted share Ss/D
IP contribution Fi/D
Total disc. share Ds
Initial IP value IP

1.00
0.00

0
1.00
100%
500
0
0
0
0

1.00
0
0

3,687
989

y1

 1.67
 0.67
 0.05
 0.95
 57%
500
1911
956
239
136
0.87
208
118

y2

2.33
1.33
0.10
0.90
39%
500
7569
3,785
946
365
0.76
715
276

y3

3.00
2.00
0.15
0.85
28%
500

11306
 5,653
 1,413
400
0.66
929
263

y4

3.67
2.67
0.20
0.80
22%
500

11395
5,698
1,424
311
0.57
814
177

y5

4.33
3.33
0.25
0.75
17%
500
8644
4,322
1,081
187
0.50
537
93

y6

5.00
4.00
0.30
0.70
14%
500
5291
2,646
661
93

0.43
286
40

y7

5.67
4.67
0.35
0.65
11%
500
2740
1,370
343
39

0.38
129
15

y8

6.33
5.33
0.40
0.60
9%
500
1241
621
155
14

0.33
51
5

y9

7.00
6.00
0.45
0.55
8%
500
503
252
63
5

0.28
18
1

 Version 1.0 2.0 3.0 4.0 5.0 6.0 7.0

 K$
K$

Table 1. Summary of
software benefit factors
over a nine-year horizon.

software development fraction investment is contin-
ued into the future. It is reasonable to apply the same
fraction throughout, unless there is a realistic founda-
tion for higher or lower profit margins in the future.
The following example allocates 25% of the net rev-
enue to the software IP component, based on a well-
managed company that develops and sells software.

To arrive at today’s value of that profit, the benefit
of future sales must be discounted. We use here a typ-
ical software industry discount rate of 15% per year.
In high-risk situations such a rate should be higher.

COMBINING THE INFORMATION

We now have estimates of the net
income per unit, the fraction of
IP of the original code remaining
in each version, and the number
of units being sold for a number
of years into the future. Those
numbers are combined to pro-
duce the income associated with
the initial software into the
future. The benefit of those
future sales is then discounted
before summing the contribu-
tions from each year of the life of
the software.

Computing the value of the
software. A spreadsheet provides
the best means to summarize the evaluation. Table 1
extracts annual values for our example, starting at a
Version 1.0 and ending with a Version 7.0. New ver-
sions of the software are released every 18 months. For
the sake of presentation we limit software life in Table
1 to nine years. The annual IP contribution is that of
the first version, the initial software being valued,
using the diminution shown in Figure 2.

The result shows that selling 50,000 units of a
product at a price of $500 over nine years yields a bit
less than a million dollars in terms of IP value dis-
counted today. For maintenance and growth $3.687
million were kept available. That amount increases
the value of the company, while it also provides jobs
and societal benefits.

Note that the collected revenue was much greater
than the value of the IP. Getting that income requires
spending for ongoing software development, market-
ing, and all the other items within a business. Figure
3 displays the results extended up to 19 years. Indeed,
the sales revenues become negligible after year 9, and
because of discounting, the IP beyond that point can
be ignored.

We made the simplest possible assumptions to
arrive at a clear result. All of the assumptions made

can be challenged and improved in any specific situa-
tion. It is also possible to plug multiple assumptions
into the computation to arrive at ranges and explore
what-if questions. All the values used in the assump-
tions have pragmatic ranges, and their leverage can be
explored. For instance, the results would look much
better if the unit price is set to say $2,000. However,
such a change means that fewer customers will buy
the software and salesmen will have to work harder.

When we analyze IP, we take the entire income,
and then allocate only 25% to the software, since
there are substantial other costs. If we want to look at

net income from sales we consider that some such
costs are proportional to sales. Making that cost-of-
sales 40% produces the dashed line of net sales
income in Figure 3. That amount also becomes negli-
gible by Version 7.

Effect of maintenance. We indicated earlier that
maintenance has a high benefit. Here, we investigate
that value. The approach represents a service model,
where the relationship of supplier-to-customer is
maintained after the initial sale. The customer will
pay for ongoing maintenance services and always have
an up-to-date product. This income is not part of the
valuation of the initial software presented previously,
since it depends on efforts made in future years.

Two new financial streams come into play now.
While there is income from the maintenance fees, the
expenses for maintenance must now also be made
explicit: no gain without pain. Initially we must spend
much of the software share shown in Table 1.

Income from maintenance changes the cash flow
drastically. After year six the income of maintenance
exceeded the income from sales alone. Extending
Table 2 beyond year 9 we find that maintenance rev-
enues remain substantial. Figure 3 plots that effect as
lines marked with circles. But to generate those rev-
enues maintenance of the product is required, which
becomes ever more costly and eventually exceeds the
total income, limiting the economic lifetime of the
software product for the supplier.

Income from maintenance. A supplier of enter-

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 73

Table 2. Net income including maintenance for the example of Table 1.

Gio table 2 (9/06)

Factors in services Today

Est. initial SW cost ($K)
Cost of maintenance Cm
 discounted for lag Cl
SW retained Rev×0.9y

Revenue left Rev - Cl
Maint.revenue Sr-1×0.15
Maint.revenue avail 2/3
Discounted M.rev. Mr/D
SW share left @ 25%×Rl
Discounted to today Sl×D
9 years disc. total Dt

500
67
82
n.a.
-82

none
none
none
-21
-21

 7,350

y1

100
123
860
832
none
none
none
208
181

y2

167
206

4,559
3,579
129
86
98
981
742

y3

233
288

9,756
5,365
684
456
450

1,797
1,182

y4

300
370

14,478
5,328
1,463
976
837

2,307
1,320

y5

367
452

17,352
3,870
2,172
1,448
1,080
2,415
1,201

y6

433
534

18,262
2,111
2,603
1,735
1,125
2,263
979

y7

500
617

17,806
753

2,739
1.836
1,030
 2.015
758

y8 y9

633
781

15,233
-529
2,497
1,665
710

1,532
436

567
699

16,646
-79

2,671
1,781
837

1,761
576

K$

Table 2. Net income
including maintenance

for the example in
Table 1.

prise software obtains an ongoing benefit by collect-
ing annual maintenance fees. The software earns
maintenance revenue every year, even as sales are
made to new customers. Most customers renew their
contracts since the alternative—obtaining and
installing new software—is much more costly than
paying a maintenance fee. Table 2 shows the income
for 15% annual maintenance fees, based on the initial
price of enterprise software. We assume that
first-year maintenance is free and that
90% of customers renew their mainte-
nance contract annually. That
income lags a great deal behind the
sales curve. Not all of the income
from maintenance fees is available
for software. For instance, there must
be a better help desk. For our example, two-
thirds of the fee was made available for software.

But maintenance is easier to sell than new
software. The dashed line for Net Maintenance
income assumes that the annual cost-of-sales to
renew a maintenance contract is only 20% of
the sales amount.

Cost of maintenance. Now we consider soft-
ware maintenance costs throughout. Mainte-
nance costs are best estimated based on initial
software cost. We assume the initial software cost
was $500K, about half of the computed value
obtained in Table 1, leaving the other half to other
initial costs. Since we value the workers performing
maintenance highly, our model assumes a relatively
high 20% annual cost of maintenance, based on
aggregated software costs. Maintenance costs do
increase over time. A fair way to estimate that growth
is to make the cost proportional to the total, ever
growing code size, as shown in Figure 3. The actual
maintenance cost from year 2 to year 7 now amounts
to $2,075K. We find that long-term maintenance
consumes about 80% of the total cost, a typical per-
centage.

The maintenance costs are borne by the income
from ongoing software sales and maintenance
licenses. Those costs overlap the costs needed to keep
the software product viable for sales. Since the bene-
fit of maintenance expense is delayed, but paid for
with current funds, it must be discounted—we must
compute a lag; that is, the delay between the time of
the investment and the time that the investment

brings in income. Given a development time of one
year for maintenance code, testing for six months,
and new versions every 18 months the average lag is
assumed here to be at 1.5 years. That means that
effective maintenance costs are increased by a steady
23% to account for the 15% annual discount. Still,
by the third year the allocated income from mainte-
nance fees is sufficient to pay for all maintenance.

The top curve in Figure 3 shows the total revenue
from sales and maintenance, and shows that rev-

enues are still substantial after 19 years, when all
are due to maintenance fees. But maintenance
costs increase, and by year 17 the operation
shows a loss. The loss is more pronounced if

we consider the net incomes, shown as dashed
lines. Now we have a loss in year 16, indicated

by the large square in Figure 3.
It is wise to stop improving the product at that

time. Stopping abruptly generates bad press for
a company that sells other products as well.

Gradually reducing expenses as less
income is generated is wiser. Still, when
customers find out that maintenance is
reduced, sales will diminish rapidly and
fewer maintenance licenses will be
renewed. We also show in Figure 3, as

the dashed lines terminating in a boxed
cross, what happens when we reduce mainte-

nance costs 25% per year and suffer a corre-
sponding reduction in maintenance contract
renewals.

Even with the high cost of long-term ongoing
maintenance the actual cash flow increases nearly
three times over the nine-year timeframe. However,
since these additional benefits occur in later years, the
income discounted to today increases less. That
income is about twice as much as the income without
maintenance revenues.

Model differences. Obtaining a result for the value
of maintenance required many more assumptions
than the base IP valuation for the initial value of the
software. We had to consider ongoing costs as well as
income. To obtain a base for maintenance costs we
also had to guess the initial cost.

The beneficial difference of including maintenance
efforts is not captured in a traditional IP valuation.
Operating in an effective service model also requires
changes to business practices. Modeling an enterprise

74 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

The goal of this article is to bring together information
from domains that rarely interact directly: software engineering, economics,

business practice, and legal sources.

business with maintenance obeys the appraisal rule
that a business should be valued as it actually operates.

CONCLUSION

Valuation of software is not easy, but is feasible. The
novel contribution of this work is the software
growth model, but to assess its effects we must place
it in an overall business model that allows a quanti-
tative assessment of the value of the inherent IP.
Without such a model unrealistic amortization
schedules tend to be used. Many assumptions are
required to assess the software-related income and
costs, but making assumptions is inherent in dealing
with the future. The alternative—remaining igno-
rant—provides no guidance. Evaluating alternate
assumptions with a spreadsheet based on the model
provides yet more insights. For instance, determin-
ing the benefits of maintenance as a service is diffi-
cult if we can’t even tell what the value of software is
in the first place.

A specific conclusion is that maintaining software,
although costly, is very worthwhile. Maintenance pro-
vides continuing refreshment of the inherent IP. With
high-quality maintenance a company can transform
its business from a sales model into a service model.
Service income is attractive to mature companies,
reducing the need for new products to keep sales high.
To operate in a service model management must
appreciate the process and motivate software staff to
sustain the value of the product. Everyone must be
involved, not just the programmers, but also the staff
that provides the ongoing intellectual input for the
three types of maintenance presented in this article.

However, maintenance costs eventually overtake
income. The limit on the life of software is not obso-
lescence, but rather the cost of maintaining ever more
complex software [3]. Providing for ease of mainte-
nance in software design and managing maintenance
well should have significant benefits.

Education and technological attitudes favor nov-
elty over maintenance. Typically software engineering
textbooks devote less than 1% of their pages to main-
tainability and maintenance, although they admit that
maintenance costs are greater than 60% of total cost.

Most students in computing disciplines graduate
without ever having faced the issue that software must
adapt. Students might have had a summer job in a
company that assigned them to maintenance tasks,
because the knowledgeable programmers wanted to
move on and do new stuff. It is, of course, an illusion
that cheap labor reduces the cost, it mainly reduces
the benefits of maintenance. Managers bemoan the
high cost of maintenance, since they are not clear
about the benefits [12]. It would be better to let

interns and recent graduates do innovative work,
while rewarding the experienced staff who sustain the
value of their existing products and services in other
ways, leading to a “gentrification” of maintenance.

The analysis approach shown here cannot deal with
the valuation of open source software, which also
requires maintenance [12]. Companies that tried to
create a business from servicing open source software
have had a very difficult time, since reasonable main-
tenance costs seem extremely high when acquisition is
nearly free.

Even though the analyses to value software depend
on assumptions that cannot be verified in advance,
having the assumptions stated explicitly and analyzed
allows a discussion of alternatives. Opinions and dis-
agreements are brought down to a less emotional
level, and will include more organizational and tech-
nical specifics.

Contributing to this work were Treasury economists, Charles Adelberg, Joy
Yen, and Shirley Tessler. Any errors in this article are, of course, my respon-
sibility, but I will not assume any responsibility for business decisions based
on application of the presented model.

References
A broader version of this article with additional references, software busi-
ness types, and downloadable spreadsheets that can be used to experiment
with the models is available at infolab.stanford.edu/pub/gio/inprogress.
html#worth.

1. Abba, W. Earned value management: Reconciling government and
commercial practices. Program Manager 26, 58–69.

2. Basili, V. Viewing maintenance as reuse-oriented software develop-
ment. IEEE Software 7, 1 (Jan. 1990), 19–25.

3. Belady, L. and Lehman, M.M. An introduction to growth dynamics.
Statistical Computer Performance Evaluation. W. Freiberger, Ed. Acade-
mic Press, 1972.

4. Boehm, B. Software Engineering Economics. Prentice-Hall, 1981.
5. Damodaran, A. The Dark Side of Valuation: Valuing Old Tech, New

Tech, and New Economy Companies. Prentice-Hall, 2002.
6. Glass, R.L. Facts and Fallacies of Software Engineering. Addison Wesley,

Reading, PA. 2003.
7. Jones, T.C. Estimating Software Costs. McGraw-Hill, 1998.
8. Lev, B. Intangibles, Management, Measurement and Reporting. Brook-

ings Institution Press, 2001.
9. Mahajan, V., Muller, E., and Wind, Y., Eds. New-Product Diffusion

Models. International Series in Quantitative Marketing. Kluwer, 2000.
10. Pigoski, T.M. Practical Software Maintenance—Best Practices for Man-

aging Your Software Investment. IEEE Computer Society Press, 1997.
11. Smith, G. and Parr, R. Valuation of Intellectual Property and Intangible

Assets, 3rd Edition. Wiley, 2000.
12. Spolsky, J. Joel on Software. Apress, 2004.

Gio Wiederhold (infolab.stanford.edu/people/gio.html) is an
emeritus professor of computer science, electrical engineering, and
medicine at Stanford University. He is a fellow of the ACM, the IEEE,
and the ACMI.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0900 $5.00

c

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 75

