
C O V E R F E A T U R E

	 32	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

Making a
Difference in the
Software Century

I
feel very lucky to have been born in the US in the
1930s and to have had a chance to participate in
the formation of a whole new discipline of soft-
ware engineering. I think those of you just entering
the software engineering field have an even more

exciting prospect ahead of you. I believe that at least the
next few decades will make the 21st century the Soft-
ware Century. Software will be the main element that
drives our necessary capabilities and quality of life, and
people who know how best to develop software-inten-
sive systems will have the greatest opportunity to make
a difference in the results.

This will be very satisfying for software engineers,
but it will impose large responsibilities to provide
excellence in the software-intensive systems that are
developed and in the services that they provide. Here
are the main challenges that I believe 21st-century soft-
ware engineers will need to address: increasingly rapid
change, uncertainty and emergence, dependability,
diversity, and interdependence.

Rapid Change: avoid ThWadi
Gone are the days when people could spend their

entire careers doing the same thing in the same ways. A
strong case can be made that the most significant chal-
lenges facing 21st-century organizations will be their
ability to adapt to rapid and unpredictable change in
more rapid and appropriate ways than their competitors.

Evidence of this accelerated pace of change can be seen
in Figure 1, showing adoption of new technologies, and
in such books as The World Is Flat,1 showing the change
in consumer preferences, international competition, and
business practices.

All of this change comes at a price. People enjoy the
fruits of change but generally dislike having to modify
their behavior. Software engineers concerned with
improving their process maturity often think that Level 5
(optimizing) is where they become mature and optimize
their processes for all time. This runs the risk of being
overoptimized and going the way of the dinosaurs.

There will be a lot of tensions between people and
organizations rapidly adapting to change and those who
prefer not to. A good example nowadays is the interac-
tion between software developers trying to be adaptive
to change within fixed-price, build-to-specification soft-
ware contract structures determined by administrators
practicing THWADI (That’s How We’ve Always Done
It). In the commercial world, better contact structures
such as “shared destiny” models are being developed;
getting these refined and more generally adopted will be
important to software success.

Of course, some THWADI is good. We will need to
separate obsolete practices from enduring principles that
need to be conserved.

Some other implications for software engineers’ careers
are that learning how to learn will be more important

in the 21st century, software engineers face the often formidable challenges of simultaneously

dealing with rapid change, uncertainty and emergence, dependability, diversity, and

interdependence, but they also have opportunities to make significant contributions that

will make a difference for the better.

Barry Boehm
University of Southern California

Excerpted with permission from Software Engineering: Barry W. Boehm’s Lifetime Contributions to Software Development, Management, and
Research, R.W. Selby, ed., copyright © 2007, IEEE CS Press-John Wiley & Sons.

	 March 2008	 33

than learning things, and that some goals, such as try-
ing to determine “the” best architecture for a system,
will be better thought of as concurrently determining
architecture baselines along with architecture evolution
processes. The evolution of the Arpanet architecture into
the architecture of the Internet is a good example.

UnCeRTainTy and emeRgenCe:
ConsideR BiTaR and iKiWisi

Rapid change can be relatively predictable, as in the
case of Moore’s law, which has consistently predicted a
doubling of computer power
every 18 months for decades,
and even has a relatively predict-
able point a dozen or so years
from now at which the doubling
will slow down and eventually
hit limits. When rapid change
is predictable, we can plan for
it and organize the architecture
to accommodate it, either via
planned upgrades or by defining
modules to encapsulate sources
of change, so that the side effects
of the changes are limited to one
module, as described in David
L. Parnas’s “Designing Soft-
ware for Ease of Extension and
Contraction.”2

However, many sources of
change are relatively unpre-
dictable, such as the emergence
of new technologies (global
positioning satellites or the
World Wide Web), changes in
consumer demand patterns,
changes in leadership person-
nel with differing priorities, or
changes in desired user inter-
face characteristics that are
not prespecifiable but emerge
with use. Frequently, when
users are asked to specify in
advance how they would like
to interact with a new applica-
tion, they will provide the IKI-
WISI (I’ll Know It When I See
It) response.

In such cases, using a sequen-
tial, requirements-specifica-
tion-first waterfall model will
generally be a recipe for a non-
responsive system and a great
deal of expensive rework. It
will be better to accept that
your project will start at the

left of a Cone of Uncertainty, as shown in Figure 2. This
figure was derived from several years of experience in
preparing cost estimates at various stages of system defi-
nition at TRW.3 It was dubbed the Cone of Uncertainty
by Steve McConnell.4

The best way to narrow a Cone of Uncertainty is to use
the BITAR (Buy Information To Avoid Risk) strategy.
This involves identifying candidate investments in reduc-
ing uncertainty such as prototyping, simulating, model-
ing, benchmarking, reference checking, COTS evalua-
tion, or market trend analysis; analyzing their relative

TV
(1928)

Electricity
(1873)

Phone
(1878)

Car
(1888)

Radio
(1905)

Video recorder
(1962)

Microwave
(1963)

PC
(1976)

Mobile phone
(1993)

Internet
(1976)

100

90

80

70

60

50

40

30

20

10

0

Pe
ne

tr
at

io
n

in
to

 th
e

m
ar

ke
t (

pe
rc

en
t)

0 10 20 30 40 50 60 70 80 90 100 110 120
Years

Figure 1. Accelerating the pace of change (courtesy of Microsoft).

+

+

+
+
+
+

+

+

+
+

+
+
+

4x

2x

1.5x

0.5x

0.25x

1.25x

x

R
el

at
iv

e
si

ze
 ra

ng
e

Concept of
operation

Requirements
specifications

Product
design

specifications

Detailed
design

specifications
Accepted
software

Completed
programs

USAF/ESD
proposals

Size (SLOC)
+ Cost ($)

Feasibility Plans and
requirements

Product
design

Detailed
design

Development
and test

Phases and milestones

Figure 2. The Cone of Uncertainty in software cost and size estimation.

	 34	 Computer

costs and benefits; and choosing the most cost-effective
ways to reduce your uncertainty and risk.

However, it will also be important to organize future
projects with enough agility to be able to adapt to the
additional emergence of new sources of unpredictable
change. This involves building agility and adaptability
into your projects’ staffing, organization, product archi-
tectures, and process architectures.

dependaBiliTy: ConsideR davas
Along with improving agility, future projects will need

to improve the dependability of the software they pro-
duce, as software is becoming the dominant source of
competitive differentiation in organizations’ products
and services. As they consider DAVAS (Dependability As
Value Assured to Stakeholders), simultaneously achieving
and improving agility and dependability will be one of the
biggest challenges for 21st-century software engineers.

When I was working on the NASA High-Dependability
Computing program with Vic Basili and others, we found
that one of the biggest challenges was just defining “depend-
ability.” There were several cases in NASA and elsewhere in
which dependability was equated with system mean time
between failures or system uptime, where this emphasis
led to the loss of other system properties that users were
counting on. In one case, the system administrators were
incentivized on uptime and ran the system in a way that
produced very high uptime, but also produced delays of up
to two weeks for users depending on rapid response when
requesting data or services from the system.

This indicates that when you need to produce a
dependable system, it will be important to identify your
most success-critical stakeholders and what value propo-
sitions their success most depends on. Figure 3 shows
that these stakeholder value propositions are likely to
conflict with each other, even for the four main stake-
holders in a software-intensive system. The end users’
success will depend on the system having many features
whose nature and priorities they can change at any time;
operating smoothly, quickly, and reliably; being compat-
ible with their other applications; and being available
right away. The sales users’ success will depend on hav-
ing fancy displays that entice customers. The administra-
tive users’ success will depend on having extensive self-
monitoring, audit trails, and trend analysis capabilities.

The acquirers will have limited resources, and their
success will depend on having a business case for each
feature and having a completely stabilized set of require-
ments. The developers’ success will depend on minimiz-
ing the risk of overrunning the budget and schedule,
which will imply having the ability to make infrastruc-
ture decisions and to reuse previously developed soft-
ware. The maintainers’ success will depend on how well
the system and its software are designed and structured
for ease of maintenance and how compatible they are
with the other artifacts being maintained.

The red lines in Figure 3 show actual conflicts among
stakeholder dependability value propositions that were
not resolved in one of the classic failed software projects,
the Bank of America MasterNet system.5 The black lines

Early availability

Flexible contract

Voice in acquisition

High levels of service

Applications compatibility

Changeable requirements

Many features

Users

Voice in acquisition

Applications compatibility

Ease of maintenance

Ease of transition

Maintainers

Rigorous contact

Development visibility and control

Political correctness

Government standards compliance

Limited development budget, schedule

Mission cost/effectiveness

Acquirers

Freedom of choice: COTS/reuse

Freedom of choice: team

Freedom of choice: process

Stable requirements

Ease of meeting budget and schedule

Flexible contract

Developers

PC: Process
PD: Product
PP: Property
S: Success

PP/S
PD/PD

PD/PD

PP/PD
PC/PC

PC/PC

S/PD

S/PC

S/PC

S/S

PD/PP

PD/PP

PC/PD

PD/PD

PD/PD

PC/PC

PP/PD

PC/PC

PC/PC
PP/PD

PD/S

PD/PP

Figure 3. Key-stakeholder value propositions and their potential conflicts. (The red lines show model clashes from the MasterNet
system.)

	 March 2008	 35

were additional conflicts we found in analyzing other
failed projects. The S, PD, PC, and PP annotations on the
lines indicate whether a line primarily reflected conflicts
among the project’s success models, product models,
process models, or property models. One implication of
the diversity of model clashes on failed projects is that
current “model-driven development” initiatives need to
consider more than just product models. A 2003 empiri-
cal study on model clashes found that product-product
model clashes were only about 30 percent of the total
number of model clashes found.6

The fact that there are so many potential conflicts
among even the four main success-critical stakeholders
means that there are many potential win-lose situations
that a project can get into. A win-lose situation usually
turns into a lose-lose situation, as happened with the
cancellation of the MasterNet project when the acquir-
ers found that their budget was being overrun, the users
were unhappy with the system’s performance, and the
maintainers were unhappy with the incompatibility
of the developer’s Prime Computer solution with their
other IBM mainframe applications.

In such a situation, it is important to manage stake-
holders’ expectations, invest more effort into ensuring
feasibility of the proposed solution with respect to all the
stakeholders, and to negotiate a mutually satisfactory
or win-win set of specifications, plans, and resources
before proceeding into development. When negotiating
requirements, it is better in the early stages to replace
words that have nonnegotiable connotations such as
“requirements” (things claimed by right and authority)
with words like “objectives” and “goals.”

Finally, to converge on a software-intensive system
that is mutually satisfactory to a diverse set of stake-
holders in such areas as banking, medicine, public ser-
vices, manufacturing, transportation, or commerce, it
is increasingly important for software engineers to be
knowledgeable not only about software concepts and
techniques but the concepts and techniques of the orga-
nizations using the software. In the 21st century and
beyond, there will still be important career paths for
people developing the digital infrastructure, but it will
be people understanding the tradeoffs between software
feasibility and applications-domain feasibility that will
be most influential in architecting and developing high-
value software-intensive systems.

diveRsiTy: avoid osUFa
The NASA example indicates that a value-neutral,

one-size-uniformly-fits-all (OSUFA) definition of
dependability as system uptime is often unlikely to suc-
ceed for other success-critical stakeholders. This conclu-
sion becomes even more pronounced in considering the
trends toward cross-cultural globalization described in
such books as The World Is Flat.1

An example in the area of software capability matu-
rity models is that in Thailand: Only 17 of 380 software-
developing companies decided to use the US-developed
Software Capability Maturity Model (CMM), and only
three of the 17 companies proceeded to increase their
CMM level. Much of the difference in usage can be
explained by the differences in the more individualistic,
masculine, short-term-oriented US culture and the more
community-oriented, feminine, long-term-oriented Thai
culture, as shown in Table 1.7

Some other cultural differences that cause difficulties
for OSUFA practices are provided in E.T. Hall’s Beyond
Culture.8 One example is the difference between poly-
chromatic cultures, in which interruptions during task
performance such as blinking e-messages and pop-up
windows are welcomed, and monochromatic cultures in
which such interruptions cause frustration as people try
to focus on the closure of one task at a time. Hall also
found that contracts in a high-content culture such as
the US averaged 10 times as many words as contracts in
a high-context culture such as France.

OSUFA contracting practices and process standards
are a particularly poor match to another 21st-century
trend toward large software-intensive systems of systems
(SISOS). These types of systems add scalability to the
simultaneous challenges of achieving high agility and
high dependability.

Figure 4 compares the average change request process-
ing times for two recent large-scale SISOS using OSUFA
high-content contracting instruments and processes.
Having to deal with many contract-affected changes
that average 141 workdays to achieve closure is not a
recipe for success in developing change-responsive and
on-schedule large SISOS.

“Some Future Trends and Implications for Systems
and Software Engineering Processes” provides some
alternatives to OSUFA processes and contracting prac-
tices for current and future large-scale SISOS.9

Table 1. Cultural differences between the US and Thailand.

	 Power		 Uncertainty		 	 	 Long-term		

	 distance	 avoidance	 Individualism	 Masculinity	 orientation

Country	 Index	 Rank	 Index	 Rank	 Index	 Rank	 Index	 Rank	 Index	 Rank

US 40 38 46 43 91 1 62 15 29 27
Thailand 64 21-23 64 30 20 39-41 34 44 56 8

	 36	 Computer

inTeRdependenCe: ConsideR Tania
In large-scale SISOS, the component systems no lon-

ger have the luxury of operating autonomously. They

act on information from other SISOS elements and
supply information to them. Whereas before they may
not have been concerned with such issues as interop-
erability and network security, now these issues are
necessary considerations. Each component system is no
longer an island unto itself, and a SISOS is not an island
either. Many of them must interoperate with more than
100 separately evolving systems with which they need
to stay synchronized.

Beyond this, it is important to recognize that
TANIA (There Are No Islands Anymore) applies not
only to the SISOS and its elements, but also to the
processes, methods, and tools used to define, design,
develop, deploy, and evolve it. No set of requirements,
designs, or plans is an island. Nor can software engi-
neering, hardware engineering, or human-factors
engineering be considered as islands. They all need
to be engineered concurrently. And this concurrency
needs to be incrementally synchronized and stabilized
to avoid divergence, chaos, or analysis paralysis. Fig-
ure 5 provides one vision for how to do this, based

on extensions of the anchor
point milestones9 provided
in the Incremental Commit-
ment Model.10

The recent Software Engi-
neering Institute report on
Ultra-Large-Scale Systems11

makes a good case that such
SISOS are best considered as
ecosystems, which contain
internal ecologies among
their component systems, and
which participate in exter-
nal ecologies within which
they need to stay viable. The
report includes numerous
good recommendations for
improving SISOS acquisition,
requirements engineering,
design, multidimensional and
dynamic quality assurance,
and evolution.

A further important point
in defining this kind of eco-
system is that considerably
more effort is needed up front
to avoid getting its concur-
rently engineered require-
ments, designs, and plans
pointed toward an ecological
crisis. Increasing interdepen-
dence and the rapid pace of
change mean thinking about
not just first-order fixes but
also their second-order and

160

140

120

100

80

60

40

20

0

W
or

kd
ay

s

Within
groups

Across
groups

Contract
mods

Figure 4. Average change request processing times for two large
SISOS in workdays.

Ex
plo

rat
ion

Com
mitm

en
t

Rev
iew Va

lua
tio

n
Com

mitm
en

t

Rev
iew Arch

ite
ctu

re

Com
mitm

en
t

Rev
iew Dev

elo
pm

en
t

Com
mitm

en
t

Rev
iew Ope

rat
ion

s

Com
mitm

en
t

Rev
iew Ope

rat
ion

s

Com
mitm

en
t

Rev
iew

Ex
plo

rat
ion

Va
lua

tio
n

Ar
ch

ite
cti

ng

Dev
elo

pm
en

t 1

Ar

ch
ite

cti
ng 2

Ope
rat

ion
1

 D
ev

elo
pm

en
t 2

 A

rch
ite

cti
ng 3

…

ECR VCR/CD ACR/A DCR/B
OCR1/C1
DCR2/B2

OC1
OC2

OC1
OC2

OC1

OCR2/C2
DCR3/B3

General/
DoD Milestones

LCM
Life-cycle Phases

Activity category

System

Architecting and designing
solutions a. integration

Goals/objectives
Requirements

Envisioning opportunities

Life-cycle planning

Evaluation

Negotiating commitments

Development and evolution

Monitoring and control

Operations and retirement Legacy

Organizational capability
improvement

Understanding needs

System scoping

Levels of activity

b. human

c. hardware

d. software

Figure 5. Representative levels of effort by phase in the Incremental Commitment Model.

	 March 2008	 37

maybe third-order effects. The
best book I’ve read recently is
The Logic of Failure.12 It shows
through a wealth of examples
and ecology simulation games
that people with their built-in,
fight-or-flight survival skills and
tendency to apply quick first-
order fixes have a horrible track
record in managing ecologies,
but that they can get better at
managing ecologies with prac-
tice and with better tools for
understanding side effects.

The need for more up-front
investment is corroborated by
the analysis summarized in Fig-
ure 6 from “Spiral Acquisition
of Software-Intensive Systems
of Systems.”13 It shows that the
“sweet spot” for “how much
up-front architecting and risk
resolution effort is enough”
increases as the size of the SISOS
increases. This effort is not just
in writing specifications and
plans but, more importantly,
in exercising models, simula-
tions, prototypes, and partial
SISOS implementations before
committing to go forward into
SISOS development.

I n the 21st century and be-
yond, software will provide
the sensing, communications, and decision support

capabilities that enable people to become aware, under-
stand, and collaborate in addressing the problems and
opportunities they will have from local and personal lev-
els to global levels. At each level, software capabilities
will strongly determine how well people will be able to
understand each other and come together to find ways
to make their local and global situations more mutually
satisfactory and sustainable into the future.

If this software and the collaboration it supports are
done well, the world could have a Golden Age going
well beyond the dreams of the Athenian and Renais-
sance philosophers. If it is done poorly, it will exacerbate
tensions and mistrust, obfuscate mutual understanding,
and cut off many of the options for joint gain that enable
people to negotiate mutually satisfactory and sustainable
agreements.

This is not to say that software is a silver bullet for
resolving social problems. Some of the limits to software
perfectability are imposed by limits to social perfect-

ability. An example is provided by Conway’s law, which
states that the structure of a software product reflects
the structure of its sponsoring and development organi-
zations. The converse of Conway’s law then states that
we will be able to create perfect software as soon as we
learn how to create perfect organizations, which seems
unlikely to happen soon. A recent National Research
Council report provides some approaches for better
including human and social considerations into soft-
ware-intensive systems development.14

But it is to say that making incremental improve-
ments in developing better software will have signifi-
cant leverage in incrementally making the world a bet-
ter place. And it is to say that being a software engineer
in the 21st century will be one of the most challenging
and rewarding careers available to people. The chal-
lenges we have discussed here of simultaneously dealing
with rapid change, uncertainty and emergence, depend-
ability, diversity, and interdependence will often be for-
midable, but they will also be opportunities to make

100

90

80

70

60

50

40

30

20

10

0

Ti
m

e
ad

de
d

to
 o

ve
ra

ll
sc

he
du

le
 (p

er
ce

nt
)

10 20 30 40 50 60
Time added for architecture and risk resolution (percent)

Percent of project schedule
devoted to initial architecture
and risk resolution

Added schedule devoted
to rework
(COCOMO II RESL factor)

Total percent added schedule

10,000
KSLOC

Sweet spot

100 KSLOC

10 KSLOC

+

+

+

+

+

+

+

Figure 6. Large SISOS need more time for architecture and risk resolution.

	 38	 Computer

significant contributions that will make a difference
for the better.

If you have read this far, I hope this means that you are
already pursuing or are seriously considering a software
engineering career or including software engineering in
your portfolio of skills. The world is going to need all the
capable software engineers or hardware and human fac-
tors engineers that understand software that it can find.
And I hope that you will find my observations helpful in
addressing the challenges and realizing the benefits you
set out to achieve. ■

References
 1. T. Friedman, The World Is Flat, Farrar, Straus, and Giroux,

2005.
 2. D.L. Parnas, “Designing Software for Ease of Extension and

Contraction,” IEEE Trans. Software Eng., Mar. 1979, pp.
128-138.

 3. B. Boehm, Software Engineering Economics, Prentice Hall,
1981.

 4. S. McConnell, Software Project Survival Guide, Microsoft
Press, 1997.

 5. B.W. Boehm, D.N. Port, and M. Al-Said, “Avoiding the Soft-
ware-Model-Clash Spiderweb,” Software Engineering: Barry
W. Boehm’s Lifetime Contributions to Software Develop-
ment, Management, and Research, R.W. Selby, ed., IEEE CS
Press-John Wiley & Sons, 2007, pp. 743-747.

 6. M. Al-Said, “Detecting Model Clashes During Software Sys-
tems Development,” PhD dissertation, Univ. Southern Calif.,
2003.

 7. G. Hofstede, Culture and Organizations, McGraw-Hill,
1997.

 8. E.T. Hall, Beyond Culture, Anchor Books/Doubleday, 1976
 9. B.W. Boehm, “Some Future Trends and Implications for Sys-

tems and Software Engineering Processes,” Software Engi-
neering: Barry W. Boehm’s Lifetime Contributions to Soft-
ware Development, Management, and Research, R.W. Selby,
ed., IEEE CS Press-John Wiley & Sons, 2007, pp. 545-571.

 10. B.W. Boehm and J. Lane, “Using the Incremental Commit-
ment Model to Integrate System Acquisition, Systems Engi-
neering, and Software Engineering,” CrossTalk, Oct. 2007,
pp. 4-9.

 11. Software Engineering Institute, Ultra-Large-Scale Systems,
CMU/SEI, 2006.

 12. D. Dorner, The Logic of Failure: Recognizing and Avoiding
Error in Complex Situations, Perseus Books Group, 1997.

 13. B.W. Boehm et al., “Spiral Acquisition of Software-Inten-
sive Systems of Systems,” Software Engineering: Barry W.
Boehm’s Lifetime Contributions to Software Development,
Management, and Research, R.W. Selby, ed., IEEE CS Press-
John Wiley & Sons, 2007, pp. 615-626.

 14. R. Pew and A. Mavor, Human-System Integration in the
System Development Process: A New Look, National Acad-
emies Press, 2007.

Barry Boehm is the director of the University of Southern
California Center for Systems and Software Engineering.
Contact him at boehm@csse.usc.edu.

31 May 2008
UC Berkeley

• General Session: 9:00am
Zellerbach Hall

• Technical Session: 11:00am
Wheeler Hall

Tribute to Honor Jim Gray

The IEEE Computer Society, ACM, and UC
Berkeley will join the family and colleagues
of Jim Gray in hosting a tribute to the
legendary computer science pioneer,
missing at sea since 28 Jan. 2007.

http://www.eecs.berkeley.edu/ipro/jimgraytribute

Registration is required for technical sessions

