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Making a  
Difference in the  
Software Century

I 
feel very lucky to have been born in the US in the 
1930s and to have had a chance to participate in 
the formation of a whole new discipline of soft-
ware engineering. I think those of you just entering 
the software engineering field have an even more 

exciting prospect ahead of you. I believe that at least the 
next few decades will make the 21st century the Soft-
ware Century. Software will be the main element that 
drives our necessary capabilities and quality of life, and 
people who know how best to develop software-inten-
sive systems will have the greatest opportunity to make 
a difference in the results.

This will be very satisfying for software engineers, 
but it will impose large responsibilities to provide 
excellence in the software-intensive systems that are 
developed and in the services that they provide. Here 
are the main challenges that I believe 21st-century soft-
ware engineers will need to address: increasingly rapid 
change, uncertainty and emergence, dependability, 
diversity, and interdependence. 

Rapid Change: avoid ThWadi 
Gone are the days when people could spend their 

entire careers doing the same thing in the same ways. A 
strong case can be made that the most significant chal-
lenges facing 21st-century organizations will be their 
ability to adapt to rapid and unpredictable change in 
more rapid and appropriate ways than their competitors. 

Evidence of this accelerated pace of change can be seen 
in Figure 1, showing adoption of new technologies, and 
in such books as The World Is Flat,1 showing the change 
in consumer preferences, international competition, and 
business practices.

All of this change comes at a price. People enjoy the 
fruits of change but generally dislike having to modify 
their behavior. Software engineers concerned with 
improving their process maturity often think that Level 5 
(optimizing) is where they become mature and optimize 
their processes for all time. This runs the risk of being 
overoptimized and going the way of the dinosaurs.

There will be a lot of tensions between people and 
organizations rapidly adapting to change and those who 
prefer not to. A good example nowadays is the interac-
tion between software developers trying to be adaptive 
to change within fixed-price, build-to-specification soft-
ware contract structures determined by administrators 
practicing THWADI (That’s How We’ve Always Done 
It). In the commercial world, better contact structures 
such as “shared destiny” models are being developed; 
getting these refined and more generally adopted will be 
important to software success.

Of course, some THWADI is good. We will need to 
separate obsolete practices from enduring principles that 
need to be conserved. 

Some other implications for software engineers’ careers 
are that learning how to learn will be more important 

in the 21st century, software engineers face the often formidable challenges of simultaneously 

dealing with rapid change, uncertainty and emergence, dependability, diversity, and 

interdependence, but they also have opportunities to make significant contributions that  

will make a difference for the better.
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than learning things, and that some goals, such as try-
ing to determine “the” best architecture for a system, 
will be better thought of as concurrently determining 
architecture baselines along with architecture evolution 
processes. The evolution of the Arpanet architecture into 
the architecture of the Internet is a good example.

UnCeRTainTy and emeRgenCe:  
ConsideR BiTaR  and iKiWisi 

Rapid change can be relatively predictable, as in the 
case of Moore’s law, which has consistently predicted a 
doubling of computer power 
every 18 months for decades, 
and even has a relatively predict-
able point a dozen or so years 
from now at which the doubling 
will slow down and eventually 
hit limits. When rapid change 
is predictable, we can plan for 
it and organize the architecture 
to accommodate it, either via 
planned upgrades or by defining 
modules to encapsulate sources 
of change, so that the side effects 
of the changes are limited to one 
module, as described in David 
L. Parnas’s “Designing Soft-
ware for Ease of Extension and 
Contraction.”2

However, many sources of 
change are relatively unpre-
dictable, such as the emergence 
of new technologies (global 
positioning satellites or the 
World Wide Web), changes in 
consumer demand patterns, 
changes in leadership person-
nel with differing priorities, or 
changes in desired user inter-
face characteristics that are 
not prespecifiable but emerge 
with use. Frequently, when 
users are asked to specify in 
advance how they would like 
to interact with a new applica-
tion, they will provide the IKI-
WISI (I’ll Know It When I See 
It) response.

In such cases, using a sequen-
tial, requirements-specifica-
tion-first waterfall model will 
generally be a recipe for a non-
responsive system and a great 
deal of expensive rework. It 
will be better to accept that 
your project will start at the 

left of a Cone of Uncertainty, as shown in Figure 2. This 
figure was derived from several years of experience in 
preparing cost estimates at various stages of system defi-
nition at TRW.3 It was dubbed the Cone of Uncertainty 
by Steve McConnell.4

The best way to narrow a Cone of Uncertainty is to use 
the BITAR (Buy Information To Avoid Risk) strategy. 
This involves identifying candidate investments in reduc-
ing uncertainty such as prototyping, simulating, model-
ing, benchmarking, reference checking, COTS evalua-
tion, or market trend analysis; analyzing their relative 
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Figure 1. Accelerating the pace of change (courtesy of Microsoft).

+

+

+
+
+
+

+

+

+
+ 

+
+
+

4x

2x

1.5x

0.5x

0.25x

1.25x

x

R
el

at
iv

e 
si

ze
 ra

ng
e

Concept of
operation

Requirements
specifications

Product
design

specifications

Detailed
design

specifications
Accepted
software

Completed
programs

USAF/ESD
proposals

Size (SLOC)
+   Cost ($)

Feasibility Plans and
requirements

Product
design

Detailed
design

Development
and test

Phases and milestones

Figure 2. The Cone of Uncertainty in software cost and size estimation.



	 34	 Computer

costs and benefits; and choosing the most cost-effective 
ways to reduce your uncertainty and risk.

However, it will also be important to organize future 
projects with enough agility to be able to adapt to the 
additional emergence of new sources of unpredictable 
change. This involves building agility and adaptability 
into your projects’ staffing, organization, product archi-
tectures, and process architectures.

dependaBiliTy: ConsideR davas 
Along with improving agility, future projects will need 

to improve the dependability of the software they pro-
duce, as software is becoming the dominant source of 
competitive differentiation in organizations’ products 
and services. As they consider DAVAS (Dependability As 
Value Assured to Stakeholders), simultaneously achieving 
and improving agility and dependability will be one of the 
biggest challenges for 21st-century software engineers.

When I was working on the NASA High-Dependability 
Computing program with Vic Basili and others, we found 
that one of the biggest challenges was just defining “depend-
ability.” There were several cases in NASA and elsewhere in 
which dependability was equated with system mean time 
between failures or system uptime, where this emphasis 
led to the loss of other system properties that users were 
counting on. In one case, the system administrators were 
incentivized on uptime and ran the system in a way that 
produced very high uptime, but also produced delays of up 
to two weeks for users depending on rapid response when 
requesting data or services from the system.

This indicates that when you need to produce a 
dependable system, it will be important to identify your 
most success-critical stakeholders and what value propo-
sitions their success most depends on. Figure 3 shows 
that these stakeholder value propositions are likely to 
conflict with each other, even for the four main stake-
holders in a software-intensive system. The end users’ 
success will depend on the system having many features 
whose nature and priorities they can change at any time; 
operating smoothly, quickly, and reliably; being compat-
ible with their other applications; and being available 
right away. The sales users’ success will depend on hav-
ing fancy displays that entice customers. The administra-
tive users’ success will depend on having extensive self-
monitoring, audit trails, and trend analysis capabilities. 

The acquirers will have limited resources, and their 
success will depend on having a business case for each 
feature and having a completely stabilized set of require-
ments. The developers’ success will depend on minimiz-
ing the risk of overrunning the budget and schedule, 
which will imply having the ability to make infrastruc-
ture decisions and to reuse previously developed soft-
ware. The maintainers’ success will depend on how well 
the system and its software are designed and structured 
for ease of maintenance and how compatible they are 
with the other artifacts being maintained. 

The red lines in Figure 3 show actual conflicts among 
stakeholder dependability value propositions that were 
not resolved in one of the classic failed software projects, 
the Bank of America MasterNet system.5 The black lines 
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were additional conflicts we found in analyzing other 
failed projects. The S, PD, PC, and PP annotations on the 
lines indicate whether a line primarily reflected conflicts 
among the project’s success models, product models, 
process models, or property models. One implication of 
the diversity of model clashes on failed projects is that 
current “model-driven development” initiatives need to 
consider more than just product models. A 2003 empiri-
cal study on model clashes found that product-product 
model clashes were only about 30 percent of the total 
number of model clashes found.6 

The fact that there are so many potential conflicts 
among even the four main success-critical stakeholders 
means that there are many potential win-lose situations 
that a project can get into. A win-lose situation usually 
turns into a lose-lose situation, as happened with the 
cancellation of the MasterNet project when the acquir-
ers found that their budget was being overrun, the users 
were unhappy with the system’s performance, and the 
maintainers were unhappy with the incompatibility 
of the developer’s Prime Computer solution with their 
other IBM mainframe applications.

In such a situation, it is important to manage stake-
holders’ expectations, invest more effort into ensuring 
feasibility of the proposed solution with respect to all the 
stakeholders, and to negotiate a mutually satisfactory 
or win-win set of specifications, plans, and resources 
before proceeding into development. When negotiating 
requirements, it is better in the early stages to replace 
words that have nonnegotiable connotations such as 
“requirements” (things claimed by right and authority) 
with words like “objectives” and “goals.”

Finally, to converge on a software-intensive system 
that is mutually satisfactory to a diverse set of stake-
holders in such areas as banking, medicine, public ser-
vices, manufacturing, transportation, or commerce, it 
is increasingly important for software engineers to be 
knowledgeable not only about software concepts and 
techniques but the concepts and techniques of the orga-
nizations using the software. In the 21st century and 
beyond, there will still be important career paths for 
people developing the digital infrastructure, but it will 
be people understanding the tradeoffs between software 
feasibility and applications-domain feasibility that will 
be most influential in architecting and developing high-
value software-intensive systems.

diveRsiTy: avoid osUFa 
The NASA example indicates that a value-neutral, 

one-size-uniformly-fits-all (OSUFA) definition of 
dependability as system uptime is often unlikely to suc-
ceed for other success-critical stakeholders. This conclu-
sion becomes even more pronounced in considering the 
trends toward cross-cultural globalization described in 
such books as The World Is Flat.1 

An example in the area of software capability matu-
rity models is that in Thailand: Only 17 of 380 software-
developing companies decided to use the US-developed 
Software Capability Maturity Model (CMM), and only 
three of the 17 companies proceeded to increase their 
CMM level. Much of the difference in usage can be 
explained by the differences in the more individualistic, 
masculine, short-term-oriented US culture and the more 
community-oriented, feminine, long-term-oriented Thai 
culture, as shown in Table 1.7 

Some other cultural differences that cause difficulties 
for OSUFA practices are provided in E.T. Hall’s Beyond 
Culture.8 One example is the difference between poly-
chromatic cultures, in which interruptions during task 
performance such as blinking e-messages and pop-up 
windows are welcomed, and monochromatic cultures in 
which such interruptions cause frustration as people try 
to focus on the closure of one task at a time. Hall also 
found that contracts in a high-content culture such as 
the US averaged 10 times as many words as contracts in 
a high-context culture such as France.

OSUFA contracting practices and process standards 
are a particularly poor match to another 21st-century 
trend toward large software-intensive systems of systems 
(SISOS). These types of systems add scalability to the 
simultaneous challenges of achieving high agility and 
high dependability. 

Figure 4 compares the average change request process-
ing times for two recent large-scale SISOS using OSUFA 
high-content contracting instruments and processes. 
Having to deal with many contract-affected changes 
that average 141 workdays to achieve closure is not a 
recipe for success in developing change-responsive and 
on-schedule large SISOS.

“Some Future Trends and Implications for Systems 
and Software Engineering Processes” provides some 
alternatives to OSUFA processes and contracting prac-
tices for current and future large-scale SISOS.9

Table 1. Cultural differences between the US and Thailand.

	 Power		 Uncertainty		 	 	 Long-term		

	 distance	 avoidance	 Individualism	 Masculinity	 orientation

Country	 Index	 Rank	 Index	 Rank	 Index	 Rank	 Index	 Rank	 Index	 Rank

US 40 38 46 43 91 1 62 15 29 27
Thailand 64 21-23 64 30 20 39-41 34 44 56 8
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inTeRdependenCe: ConsideR Tania 
In large-scale SISOS, the component systems no lon-

ger have the luxury of operating autonomously. They   

act on information from other SISOS elements and 
supply information to them. Whereas before they may 
not have been concerned with such issues as interop-
erability and network security, now these issues are 
necessary considerations. Each component system is no 
longer an island unto itself, and a SISOS is not an island 
either. Many of them must interoperate with more than 
100 separately evolving systems with which they need 
to stay synchronized.

Beyond this, it is important to recognize that 
TANIA (There Are No Islands Anymore) applies not 
only to the SISOS and its elements, but also to the 
processes, methods, and tools used to define, design, 
develop, deploy, and evolve it. No set of requirements, 
designs, or plans is an island. Nor can software engi-
neering, hardware engineering, or human-factors 
engineering be considered as islands. They all need 
to be engineered concurrently. And this concurrency 
needs to be incrementally synchronized and stabilized 
to avoid divergence, chaos, or analysis paralysis. Fig-
ure 5 provides one vision for how to do this, based 

on extensions of the anchor 
point milestones9 provided 
in the Incremental Commit-
ment Model.10

The recent Software Engi-
neering Institute report on 
Ultra-Large-Scale Systems11 

makes a good case that such 
SISOS are best considered as 
ecosystems, which contain 
internal ecologies among 
their component systems, and 
which participate in exter-
nal ecologies within which 
they need to stay viable. The 
report includes numerous 
good recommendations for 
improving SISOS acquisition, 
requirements engineering, 
design, multidimensional and 
dynamic quality assurance, 
and evolution.

A further important point 
in defining this kind of eco-
system is that considerably 
more effort is needed up front 
to avoid getting its concur-
rently engineered require-
ments, designs, and plans 
pointed toward an ecological 
crisis. Increasing interdepen-
dence and the rapid pace of 
change mean thinking about 
not just  first-order fixes but 
also their second-order and 
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maybe third-order effects. The 
best book I’ve read recently is 
The Logic of Failure.12 It shows 
through a wealth of examples 
and ecology simulation games 
that people with their built-in, 
fight-or-flight survival skills and 
tendency to apply quick first-
order fixes have a horrible track 
record in managing ecologies, 
but that they can get better at 
managing ecologies with prac-
tice and with better tools for 
understanding side effects. 

The need for more up-front 
investment is corroborated by 
the analysis summarized in Fig-
ure 6 from “Spiral Acquisition 
of Software-Intensive Systems 
of Systems.”13 It shows that the 
“sweet spot” for “how much 
up-front architecting and risk 
resolution effort is enough” 
increases as the size of the SISOS 
increases. This effort is not just 
in writing specifications and 
plans but, more importantly, 
in exercising models, simula-
tions, prototypes, and partial 
SISOS implementations before 
committing to go forward into 
SISOS development.

I n the 21st century and be-
yond, software will provide 
the sensing, communications, and decision support 

capabilities that enable people to become aware, under-
stand, and collaborate in addressing the problems and 
opportunities they will have from local and personal lev-
els to global levels. At each level, software capabilities 
will strongly determine how well people will be able to 
understand each other and come together to find ways 
to make their local and global situations more mutually 
satisfactory and sustainable into the future.

If this software and the collaboration it supports are 
done well, the world could have a Golden Age going 
well beyond the dreams of the Athenian and Renais-
sance philosophers. If it is done poorly, it will exacerbate 
tensions and mistrust, obfuscate mutual understanding, 
and cut off many of the options for joint gain that enable 
people to negotiate mutually satisfactory and sustainable 
agreements.

This is not to say that software is a silver bullet for 
resolving social problems. Some of the limits to software 
perfectability are imposed by limits to social perfect-

ability. An example is provided by Conway’s law, which 
states that the structure of a software product reflects 
the structure of its sponsoring and development organi-
zations. The converse of Conway’s law then states that 
we will be able to create perfect software as soon as we 
learn how to create perfect organizations, which seems 
unlikely to happen soon. A recent National Research 
Council report provides some approaches for better 
including human and social considerations into soft-
ware-intensive systems development.14

But it is to say that making incremental improve-
ments in developing better software will have signifi-
cant leverage in incrementally making the world a bet-
ter place. And it is to say that being a software engineer 
in the 21st century will be one of the most challenging 
and rewarding careers available to people. The chal-
lenges we have discussed here of simultaneously dealing 
with rapid change, uncertainty and emergence, depend-
ability, diversity, and interdependence will often be for-
midable, but they will also be opportunities to make 
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significant contributions that will make a difference 
for the better.

If you have read this far, I hope this means that you are 
already pursuing or are seriously considering a software 
engineering career or including software engineering in 
your portfolio of skills. The world is going to need all the 
capable software engineers or hardware and human fac-
tors engineers that understand software that it can find. 
And I hope that you will find my observations helpful in 
addressing the challenges and realizing the benefits you 
set out to achieve. ■
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