A FLEXIBLE TOOL FOR VISUALIZING ASSEMBLY CODE

Joshua C. Estep and Christopher A. Healy

Department of Computer Science

Furman University

Greenville, SC 29613-1124

ABSTRACT

Reading an assembly program can often be a tedious and slow process, and one can easily lose patience while looking for important features such as nested loops or function calls. In this paper the authors describe a tool in which this process is automated. Furthermore, we designed our tool in such a way that it can work for any assembly language. The tool actually consists of two programs that can be run independently – one program performs a basic parse of the assembly code to detect all the control-flow features. The other program takes this control-flow information and presents it in a Java GUI Frame. Although it is in the prototype stage and we are only using it in class for the first time, we have found our tool saves much human effort and is computationally efficient in discovering the structure of assembly code.

1. Introduction

For many people, learning assembly language is difficult because of its terse syntax. When looking at an assembly source file, the register names do not easily correspond to meaningful information about a program. For example, the counter variable for a loop may be called “$s0” rather than the more familiar “i” or “count”. And the structure of the program, including control structures such as if-then constructs and loops, is not obvious, mainly because it is commonplace for assembly instructions to appear at the same level of indentation. So, for all practical purposes, the code is not indented, making it harder for the reader to see nested loops, “if” statements inside loops, etc.

Although there is little demand for assembly programmers today, it is still important to expose computer science students to the realities of assembly code, because this knowledge gives a much more accurate view of the code that is actually being executed inside the CPU. Thus, it is possible to make more accurate statements about the performance of hardware and software. The purpose of our work is to make the study of assembly code less arduous. For example, if one wants to examine an assembly program to understand why it executes the way it does, it is necessary to find the control structures – the functions, loops and other transitions such as those that would arise from if or switch statements. It is not hard to do this by hand, but it is a tedious process, especially for larger programs, and the authors felt we could automate this process. We have created a tool by which people can input an assembly source program, and see a graphical depiction of it that shows how the code is structured.

The second major goal of our work is retargetability. In other words, we wanted a tool that would be simple to port from one assembly language to another. Porting a compiler to a new architecture can take months – our goal was to for a user to retarget our software to a new architecture within hours. It should only be necessary to specify the syntax of the new instruction set (i.e. what operations are included, what registers and comments look like, etc.)

2. Approach

We accomplished our task in two parts. First we wrote a Java program called SuperBlock, which takes as input a file describing the control flow of a computer program, and then pops up a graphical user interface showing the structure of the program, including the constituent functions and control flow, in a JFrame. SuperBlock allows the user to interactively choose different source files, scroll bars to view different parts of the program, etc. SuperBlock worked out successfully, but its applicability was originally limited because our control-flow files could only be generated by one particular C compiler called vpo [1]. So one could consider SuperBlock to be a C-program visualizer, but only if vpo is available.

The second step was for us to write a program that we eventually called RALPHO – a Retargetable Assembly Level Program Hierarchical Generator. The purpose of RALPHO is to take any assembly program (in any assembly language), and produce the control-flow file required by SuperBlock. When you put the two programs together, we now have the capability of visualizing any assembly program. The overall framework is depicted in Fig. 1.

In the center of Fig. 1 is a file that describes the control flow of a source program. This control-flow file conforms to a precise format that is defined by a grammar [2]. The types of information contained in this file will be described in Section 4. Originally, the purpose of such a file was to help determine the execution time of the program in question. This is done by running a timing analyzer [3], which outputs both the worst-case and best-case execution time. So, the top row of Fig. 1 shows how a compiler and timing analyzer can be used in tandem to predict the performance of some C program. Our work with RALPHO and SuperBlock simply represents a second application of knowing the control-flow information. By using the same control-flow information file, we can show the structure of the program for a user in a Java frame. So the thrust of this paper is shown in the second row of the figure – we want to be able to take an assembly program, produce its corresponding control-flow file (the same one that would have been created by vpo), and have SuperBlock interpret the control-flow information to show the structure of the program on the screen.

In summary, the difference between RALPHO and SuperBlock is that SuperBlock is the program that users will interact with to view the structure and code inside an assembly program. RALPHO does the analysis that makes SuperBlock know where everything is. Thus, one should run RALPHO before running SuperBlock, although the only output from RALPHO is an ASCII file containing control-flow information.

Fig. 2 shows a typical session with SuperBlock. On the left is a frame showing a portion of an assembly program. The program is partitioned into blocks of instructions. Straight lines or arcs are used to show transitions from one block of instructions to another. On the right are two windows showing the actual instructions contained in blocks 3 and 4. They were obtained by clicking the mouse on the rectangles “Function des Block 3” and “Function des Block 4”. Block 4 contains an instruction “ble,a” which is a conditional branch back to block 3. Thus, blocks 3 and 4 comprise a loop, and in the control-flow window on the left, there is a blue arc signifying this relationship.

[image: image1.jpg]Function des Block 1

Function des Block 2

Function des Block 3

Function des Block 4

Function des Block 5

Function des Block &

Function des Block 7

3. Related Work

Actually, the idea of having a GUI represent assembly or low-level code for manipulation is not new. In fact, some IDE’s allow a programmer to see assembly code, although the output may not be as informative as SuperBlock. GUIs for assembly-level analysis have been around for over 10 years, although they are generally used by specialists such as compiler writers. For example, Boyd et al. [4] wrote a GUI called xvpodb whose purpose was to assist in debugging a compiler. A user could see the result of certain compiler optimizations with respect to intermediate code. The GUI contained wind and rewind buttons so that a user could watch the effect of any of the hundreds or thousands of transformations made on the code during optimization and code generation. His program was implemented in C using the X window toolkit. However, his tool was geared for compiler writers, and not for those wishing to learn the basics of assembly programming. And since Boyd’s tool showed intermediate code, it was machine-independent output, but we felt the need to see actual assembly code.

The key to our approach (see Fig. 1) is the use of a text file depicting control-flow information. We decided to use the particular format used by the vpo compiler. This control-flow file format has been used successfully to analyze C or assembly code to predict the execution time of programs [2]. The authors felt that the information contained in this file (described in the next section) was sufficient for SuperBlock to give an accurate representation of the assembly code.
4. Analysis in RALPHO

RALPHO was definitely more complex than SuperBlock because of the analysis that RALPHO must perform on an arbitrary assembly program. It was implemented in about 4100 lines of C code. Before discussing the details of RALPHO’s design, it would be worthwhile to review the assembly language constructs that our approach relies upon.

4.1 Assembly Language Structures

Table 1 shows what information is stored for each element of the assembly program. The Function is the highest level of abstraction used by RALPHO to describe the structure of a program; the Operand is the lowest level. A program consists of one or more functions, each function contains one or more blocks, etc. When RALPHO has completed the analysis of a given assembly program it will represent the entire program as a list of functions.

	Level of abstraction:
	Function
	Block
	Instruction
	Operand

	Elements contained:
	Name

Block list

Loop list
	Name

Block number

Instruction list

Predecessor list

Successor list

Dominator list

Pointer to function
	Name

Opcode

Operands

Cycle time

Type (e.g. jump)

Pointer to block
	Name

Pointer to instruction

Operand: An assembly language instruction parameter. RALPHO recognizes three categories of operands:
1. Register
(Example: $x0)

2. Immediate
(Example: 7)

3. Label

(Example: main)

Instruction: A single line of assembly code. Each instruction can have 0, 1, 2, or 3 operands. RALPHO recognizes three categories of instructions:

1. Regular
(Example: addi $s0, $s1, 2)

2. Jump

(Example: j main)

3. Branch

(Example: beq $s0, $s1, main)

Regular instructions are all the instructions that cause no change in a program’s control flow; therefore, after the execution of a regular instruction, the instruction immediately succeeding the regular instruction is executed (unless the end of the program has been reached).

Jump instructions have a single operand: a label. Jump instructions always cause control to go to the specified label. In RALPHO, labels are recognized as string literals, ending with a colon when they are declared. Function calls are included as jump instructions because function calls always cause a change in control flow.

Branch instructions also case control to change but only after performing some sort of comparison such as “branch if greater than.” If the result of the comparison made by the branch instruction is “true” then the program’s control is moved to the label specified by an operand of the branch instruction. If false, control simply continues to the next instruction.

Block:

A block is a group of one or more instructions. In practice, a block’s beginning is signified by a label or the ending of another block. A block’s end is signified by a jump/branch instruction, another label (which signifies the beginning of a new block), or the end of the program.

The kind of block recognized by RALPHO is known as a “basic block” [5]. The fundamental property about a basic block is that once control enters a block, the program will execute all the instructions in the block. In other words, a transfer of control cannot take place in the middle of a block. This convenient division of instructions into basic blocks makes understanding the structure of an assembly program more manageable: it is only necessary to look at the blocks and not all the individual instructions.

When looking at Table 1, at first it may seem that much information is stored concerning a block. RALPHO detects each block as well as each block’s successors, predecessors, and dominators. The knowledge of successors, predecessors, and dominators is also necessary for loop detection within a given function.

Function:

A function is a group of one or more blocks. We detect functions once the blocks have been determined. We assume that every function begins with a label, however not all labels signify the beginning of a function. We can identify which labels are function labels by seeing if the label is “main" or matches the destination of a function-call instruction from anywhere in the program.

4.2 RALPHO’s Algorithm Design

Here are the four main steps that take place during RALPHO’s execution. The steps, as well as the sub steps, are executed in the order indicated.

1. Initialization of input files

1. Assembly language definition file (ADF)

2. Assembly source code file

2. Hierarchical division

1. Partition instructions into blocks

2. Partition blocks into functions

3. Block and loop analysis

1. Compute successors of each block

2. Compute predecessors of each block

3. Compute dominators of each block

4. Detect all loops, and determine their nesting levels

4. Output of resulting data

1. Control-flow file is created

2. Analysis summary is presented

Details of the algorithm as well as the RALPHO source code are available in [6]. The rest of this section will focus on some of the more interesting aspects of the design.

4.3 Information about the Instruction Set

Besides the assembly source file, the other input file read by RALPHO is the assembly definition file (ADF). The purpose of this file is to specify all the syntactic features of the assembly language (the instruction set) that will help RALPHO recognize the various elements such as operands, instructions, blocks and functions. The format of the ADF is defined by a context-free grammar [6]. To summarize, the assembly definition file includes the following information:

· Name of language (i.e. SPARC)

· Whether the machine uses delayed branching (a value 1 or 0)

· Name of instruction representing a function call (i.e. jal)

· Directives that identify the beginning of code and data segments

· Names of all registers

· List of regular instructions

· List of branch instructions

· List of jump instructions

We designed the format of the ADF so that it would be straightforward to create or modify. For example, to assist the user in creating this assembly definition file, RALPHO supports comments that are delimited by /* and */ or that begin with // and go to the end of the line.

Each of the language elements listed above is defined in a manner reminiscent to declaring a struct in C. For example, here is how the jump instructions on the SPARC could be defined:

Jump_instructions {

call lab, imm, – // function call

ba lab, –, – // ba = branch always

}

This declaration says that there are two jump instructions, the call instruction and the ba (branch always) instruction. The dashes indicate that a particular operand is not used: call takes 2 operands and ba takes one.
Although the concept of delayed branching may at first seem esoteric, it is important for RALPHO to know whether the machine uses delayed branching: the issue has to do with identifying when one block ends and another starts when RALPHO encounters a branch or jump instruction. If the machine does not employ delayed branching, then the branch/jump will be the last instruction in the block. However, in the presence of delayed branching, the branch/jump instruction will be the second-to-last instruction in the block, to be followed by one instruction in its “delay slot” [7]. For example, in Fig. 2, the window showing block 4 contains a branch instruction (#19) followed by an instruction in its delay slot (#20).

The assembly definition file also contains information about the machine that may not be useful to SuperBlock, but would be useful to the timing analyzer. (The same control-flow file could be input to both SuperBlock and the timing analyzer; see Fig. 1). For example, the timing analyzer would need to know the number of clock cycles required by each instruction.

4.4 Analysis of Blocks and Loops

This subsection describes the attributes of both blocks and loops, which are identified and set by RALPHO and output in the control-flow file. The data collected from the following block analyses is ultimately used by RALPHO to detect loops in the program being analyzed.

Successor Blocks:

A block’s successor blocks are all the blocks in the function where control flow could go immediately after a block executes.

Predecessor Blocks:

A block’s predecessor blocks are all the blocks in the function that could have been executed immediately before control flow reaches the current block.

Dominator Blocks:

A block’s set of dominator blocks include all blocks in the function where control flow necessarily must have passed through in order to reach the current block. The working definition of a block’s dominator blocks is as follows [5]:

1. Every block dominates itself; and the first block in a function’s is only dominated by itself.

2. In general, a block will have more dominators than just itself, so we look at this block’s predecessors, and add in the intersection of their dominator sets. For example, if block 5 has blocks 3 and 4 as predecessors, then the dominator set for block 5 would be itself, plus (union) the intersection of the dominator sets of blocks 3 and 4.

The calculation of dominators may at first sound strange and pointless, but it is necessary in order to detect the loops in the program [5].

Loop:

A loop is a list of all the blocks in a function where control flow enters at the first block and continues all the way to the last block in the list, and then returns to the top. The way we detect a loop is by seeing if we have a situation where a block B has one of its dominator blocks as its successor. Then block B is the last block in the loop, and the loop begins with this “header” block that is both a dominator and a successor block B [5]. RALPHO also detects the nesting level of loops: in other words, it can distinguish between inner and outer loops, to any depth of nesting. It does this by testing if the set of blocks comprising one loop are a subset of another loop.

4.5 Implementation Language Issues
In retrospect, there were a couple drawbacks to implementing RALPHO using C rather than an object-oriented language like Java or C++. For example, there was a need in RALPHO for some sort of data structure with more functionality than an array. Because of the linear nature of instructions, blocks, and functions within programs, a doubly linked list was the desired method of data storage. Because, C does not have templates, an alternative method of polymorphic data storage was devised—LinkedList.

5. RALPHO’s Performance

Our basic goal for RALPHO was that it should create the control-flow file just like vpo would have. In the end, there were only minor discrepancies between the control-flow file generated by RALPHO and the one generated by the vpo; however, these discrepancies do not affect the overall structure of the code, and therefore would have no bearing on the output produced by SuperBlock. They are described in detail in [6]. For example, the only significant difference is that RALPHO does not calculate the number of iterations of loops.

To test the efficiency of RALPHO’s analysis, several benchmarks were chosen, and the results are presented in Table 2. Each test took place on a Pentium III 450MHz with 256MB RAM running Windows XP Professional. The execution time includes the production of a control-flow file for each program. Execution times tended to differ with each execution of RALPHO due to other processes in the system running simultaneously since RALPHO follows the same algorithm for each execution. The first run of each program took significantly longer (About fifty more milliseconds) because the time necessary to copy the source files from primary to secondary memory the first time. Because of the first run taking so much longer, execution time data was recorded starting with the second run of each program. The average reported number after ten runs has been recorded for each program tested.

	Name
	Num inst.
	Total time

(ms)
	Time per instruction

(ms)
	Description of benchmark

	double.s
	24
	12.1ms
	0.51
	A doubly nested loop

	summidall.s
	31
	11.0ms
	0.35
	Sums the middle half & all elements of an array half 1000 integer array

	Triple.s
	43
	11.0ms
	0.25
	A triply nested loop

	sym.s
	50
	13.1ms
	0.24
	Tests if a 500x500 matrix is symmetric

	diagseq.s
	62
	18.1ms
	0.29
	Initializes a two-dimensional array along a diagonal

	abcd.s
	57
	17.0ms
	0.30
	Nested function calls

	sumoddeven.s
	29
	36.2ms
	1.25
	Sums the odd and even numbered elements of a 1000 integer array

	cal.s
	352
	71.2ms
	0.20
	Prints a calendar

These results show that RALPHO’s analysis is quite efficient. A compiler may take a few seconds to produce the control-flow file (because it is also generating code and optimizing), but RALPHO generally takes well under a tenth of a second. The sumoddeven program had a higher analysis time because it declares a 1000 integer array, so the file begins with 1000 lines of data declarations to initialize the array. The execution time per instruction is derived by dividing the total execution time by the number of instructions in the program.

6. Design of SuperBlock

The purpose of SuperBlock is to read the control-flow file, which was created by RALPHO (or by vpo), scan this information for the details about the functions, loops, blocks and instructions that are present in the program, and show them in a JFrame window.

Since the Java language is well suited to creating GUIs quickly, we decided to implement SuperBlock in Java. There were several convenient features of the Java API [8] that we employed for our GUI. First, of course, we needed the Java Swing components of JFrame and JPanel that are common to nearly all GUIs developed with Java. Second, the java.awt.geom package gave us the ability to draw geometric objects such as rectangles (to depict the blocks) and arcs (to depict transitions). Third, we needed to process events from the keyboard and mouse, so that SuperBlock could respond to input (e.g. clicking on a specific block) – and for this we used the usual MouseListener methods in the java.awt.event package.

SuperBlock was originally written by Jete O’Keeffe at Furman University in 2002. Its implementation is fairly straightforward, with about 1200 lines of source code divided into 16 classes. The following table summarizes the more important classes.

	Class
	Purpose

	SuperBlock
	main method that creates a BlockFrame (JFrame)

	BlockFrame
	Creates window where control-flow will be shown;

also loads a menu and handles its events (e.g. opening a file)

	NewFrame
	Defines a second window in which assembly code is shown

	BlockReader
	Contains subclasses that read the assembly file and control-flow file

	BlockDrawer
	Draws blocks on screen as well as all the inter-block control-flow transitions; handles mouse clicks to determine which block is being selected; handles keyboard presses to determine direction to move (up or down)

One design decision we made was to color-code the transitions. (The authors apologize this feature does not come across well in our figures depicting SuperBlock’s output.) Black arcs represent the forward transitions: fall-through (i.e. transitions to the subsequent block), as well as forward branches and jumps. Blue arcs are used for backward transitions, such as back edges in a loop. Arcs of other colors are used to represent function calls. Each function call is assigned a different color to allow the user to distinguish among several function calls coming from different places.

However, we decided not to draw transitions representing function returns. In our experimentation we found that these arcs would be redundant because it is possible to deduce where the function returns to by following the function-call transition backwards to the point of the function call, and continuing to the next block.

[image: image2.jpg]£ SuperBlock - C:Amy filesthorse\cs80\iop.s

Function fun Black 1

Function main Block 1

Function main Block 2

Function main Block 3

Function main Block 4

Function main Block 5

For example, Fig. 3 shows a program flop.s containing two functions: fun with just one block, and main with 5 blocks. There is a function call instruction in block 2. The function return is a transition from fun’s block 1 to main’s block 3. But if we were to draw an arc between these two blocks, it would cross an existing arc whether we draw it on the left (crossing the transition from 2 to 4) or right (by crossing the function call arc). By not explicitly showing the function return transitions, we reduce the clutter of having so many arcs on the screen.

7. Classroom Applications

The authors have just started to use SuperBlock for class in Spring 2004. SuperBlock can be used to help illustrate a couple fundamental concepts in a computer organization class. For example, students learn that a compiler generates assembly code. But when looking at the assembly program, students may be under the impression that all the structure has been lost, since about all they see is a list of instructions. The block diagram in SuperBlock is designed to reassure students that the original structure (i.e. functions and loops) of the program is maintained. Plus, by introducing the concept of a basic block as a layer of abstraction above the individual instruction, the program will appear less cumbersome.

The basic block concept also makes it easier to calculate the number of dynamic instructions executed – useful for calculating number of instruction cache hits and misses. Possible homework assignments for SuperBlock/RALPHO could include adding code to RALPHO to interactively ask the user for the number of iterations of loops, and then automatically output the number of instructions executed. Alternatively, given the number of words per instruction cache line, determine which basic blocks are allocated to which cache lines, etc.

8. Future Work

At the present time we consider SuperBlock a prototype, since there are minor cosmetic details that need ironing out. For example, it would be desirable to indicate how many instructions are in each block in the block diagram, in addition to just printing the block number. Another improvement is to improve the appearance of arcs. In Fig. 3, there is a yellow function-call arc from block 2 of main() to block 1 of fun(). However, because the destination of the function call is relatively close, our drawing algorithm has drawn this arc so wide that the middle of the arc is off the frame. To aid readability, we can also insert arrows to make clear the direction of a transition (rather than just relying on color). And we can add a scroll bar in addition to having the user hit the u and d keys to indicate up and down motion. It would also be desirable for SuperBlock to automatically number the instructions. At the present time, these instruction numbers have been typed into our assembly code as comments off to the side (e.g. “!15”).

Another enhancement that we are considering is having RALPHO also determine all the possible execution paths through a function. When looking at the block diagram in SuperBlock, it may not be clear how many possible paths there are through all the loops and if/then structures. This path information could be added to the control-flow file, and read in by SuperBlock.

A more substantial enhancement to SuperBlock would be for it to allow editing of assembly code. However, it should be noted that changes to the assembly code could easily impact the control flow of the program (by creating or deleting blocks, inserting or removing transitions, etc.). Therefore, it would be necessary to re-run RALPHO and refresh the control-flow window to depict the updated relationships between blocks. This editing and automatic updating capability may be difficult to implement in the general case. It is possible that someone editing an assembly file will make a mistake. RALPHO assumes that the assembly program that it analyzes is syntactically correct. It would be necessary to invoke an assembler, if one is available. RALPHO’s retargetability means that the instruction set could be for an experimental or theoretical machine that does not really exist, so there would be no assembly to invoke. Instead, RALPHO would need to perform a more thorough parsing than it currently does. To accomplish this, we could use Yacc [5] to automatically create the necessary parser for us, but we could re-design the format of the Assembly Definition File so that it conforms to a Yacc grammar. However, this would make the retargeting process more difficult for the user, especially for someone unfamiliar with Yacc.

9. Conclusion

This paper has described a tool that can be used to visualize the structure of an assembly program. For example, it can show where the control structures are, such as loops, branches and function calls. The authors recognized that there are two distinct facets to this problem. One facet is the rendering of control-flow information translated from a text representation to a graphical one – this is the province of SuperBlock, which we implemented in Java. The other facet, which took significantly more effort, was the ability to read in a program written in any assembly language, and output the control-flow text file that SuperBlock relies upon. RALPHO resolves this latter issue by reading an assembly definition file that defines the syntax of the language. To port to a new instruction set, it is only necessary to provide a new assembly definition file, rather than write a whole new program.

Although SuperBlock is not designed to create or edit assembly programs from scratch, the authors’ purpose in creating this program was to allow a user to take a given, unfamiliar assembly program and quickly get a feel for its structure.

References

[1] M. Benitez, J. Davidson, “A Portable Global Optimizer and Linker,” Proceedings of the Symposium on Programming Language Design and Implementation, June 1988, pp. 329-338.

[2] C. Healy, Automatic Utilization of Constraints for Timing Analysis, PhD dissertation, Florida State University, 1999.

[3] C. Healy, R. Arnold, F. Mueller, D. Whalley and M. Harmon, “Bounding Pipeline and Instruction Cache Performance”, IEEE Transactions on Computers, January 1999, pp. 53-70.

[4] M. R. Boyd and D. B. Whalley, “Graphical Visualization of Compiler Optimizations”, Journal of Programming Languages, June 1995, pp. 69-94.

[5] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley: Reading, MA, 1986.

[6] J. Estep, The Design and Implementation of the Retargetable Assembly Level Program Hierarchical Organizer, senior thesis, Furman University, 2003.

[7] D. Patterson and J. Hennessy, Computer Organization and Design, Morgan Kaufmann, 2nd ed., 1998.

[8] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, version 1.4.2 API Specification, http://java.sun.com/j2se/1.4.2/docs/api/index.html (accessed 3/22/2004).

Control-flow

information

compiler

Assembly

program

C Program

Graphical

display

Super

Block

RALPHO

Fig. 3: SuperBlock showing a program with a function call

Timing

prediction

Timing

analyzer

Table 3: Some important classes defined in SuperBlock

Table 2: RALPHO’s analysis time

Table 1: Hierarchical Levels of an assembly program

Fig. 2: Viewing a program with SuperBlock

Fig. 1: Framework for visualizing assembly code.

PAGE

